H24

Cho ∆MNP vuông tại M, kẻ đường cao MH (H∈NP) a) Chứng minh: ∆HNM∽∆MNP b) Cho biết MN=6cm, MP=8cm. Tính NP, MH, HN, HP c) Kẻ tia phân giác MD (D∈NP). Trong ∆MDN kẻ tiếp tia phân giác DE (E∈MN) trong ∆MDN kẻ tia phân giác DF (F∈MP) chứng minh: EM/EN×DN/DP×FP/FM=1

NT
10 tháng 5 2022 lúc 22:02

a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

góc N chung

Do đó: ΔHNM\(\sim\)ΔMNP

b: \(NP=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(MH=\dfrac{MN\cdot MP}{NP}=4.8\left(cm\right)\)

\(HN=\dfrac{MN^2}{NP}=3.6\left(cm\right)\)

=>HP=6,4(cm)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
MQ
Xem chi tiết
TL
Xem chi tiết
HM
Xem chi tiết
TQ
Xem chi tiết
NA
Xem chi tiết
HN
Xem chi tiết
NA
Xem chi tiết
NB
Xem chi tiết