Cho ΔABC cân tại A có AB=AC=a, BC=b. Đường tròn tâm O nội tiếp ABC tiếp xúc với cạnh AB, BC, AC tại D,R,F. Tia BF cắt đường tròn (O) ở điểm thứ 2 I, tia PI cắt BC tại M
1/Cminh: a) Tứ giác CEOF nội tiếp được đường tròn
b) DF//BC
c) \(\frac{BD}{BC}=\frac{BM}{CF}\)
2/ Tính AD và bán kính (O) theo a và b
Cho tam giác ABC nội tiếp đường tròn (O) . Các điểm M,N lần lượt là trung điểm của các cạnh BC,AC. Tia MN cát (O) tại D. Chứng minh \(\frac{AB}{CD}+\frac{AC}{BD}=\frac{BC}{AD}\)
Cho △ABC đều . Trên AB , AC lấy E và D sao cho \(\frac{DE}{AE}\) = \(\frac{1}{2}\) ; \(\frac{AD}{CD}\) = \(\frac{1}{2}\) . Các đường thẳng BD , CE cắt nhau tại M , đường trung trực của đoạn CM cắt BC ở K. Gọi N là điểm đối xứng của C qua K . CMR : 3 điểm A ,M , N thẳng hàng
Cho tam giác ABC vuông tại A (AB < AC), phân giác AD của BAC và phân giác ngoài AE (D,E ϵ BC). CMR:
a) \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
b) \(\frac{1}{AB}-\frac{1}{AC}=\frac{\sqrt{2}}{AE}\)
Cho (O) và (O') cắt nhau tại A và B. Vẽ dây AC của (O) tiếp xúc (O'). Vẽ dây AD của (O') tiếp xúc (O). Chứng minh:
a, \(AB^2=BC\cdot BD\)
b, \(\frac{BC}{BD}=\frac{AC^2}{AD^2}\)
Cho tam giác ABC vuông tại A có góc B =60 độ; BC=6cm
a)Tính độ dài AB,AC
b)Kẻ đường cao AH của tam giác ABC. Tính độ dài HB,HC
c)Trên tia đối của tia Ba lấy điểm D sao cho DB=DC.cm\(\frac{AB}{BD}=\frac{AC}{CD}\)
CÂU A,B MÌNH BIẾT LÀM RỒI CÒN MỖI CÂU C THÔI :((((
CÁC BẠN GIÚP MÌNH VỚI PLS!!!!!
Cho \(\Delta ABC\) ; AD là phân giác ; AB=c ; AC=b ; BC=a C/M
a) \(\sin\frac{A}{2}\le\frac{a}{b+c}\)
b) \(\sin\frac{A}{2}\). \(\sin\frac{B}{2}\) . \(\sin\frac{C}{2}\) \(\le\frac{1}{8}\)
c) AD = \(\frac{2bc.\cos\frac{A}{2}}{b+c}\)
Các bạn có thể làm ý nào thì cứ làm nhé . Nếu đúng thì mình sẽ tick cho
Có mấy bài bất đẳng thức, bạn nào làm được câu nào thì làm nhé
a) Cho \(a,b,c,d>0\)
Chứng minh rằng : \(ab+dc+cd+ad\le\frac{\left(a+b+c+d\right)^4}{4}\)
b) Cho \(x,y\in R^+\)thỏa mãn \(x+y=2\)
Chứng minh : \(x^2y^2\left(x^2+y^2\right)\le2\)
c) Cho \(a,b,c\in R^+\)tùy ý
Chứng minh rằng : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
1 . Chứng minh \(\frac{1}{2\sqrt{2}+1\sqrt{1}}+\frac{1}{3\sqrt{3}+2\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\frac{1}{\sqrt{n+1}}\)
2 .
Cho đường tròn tâm O bán kính R và M là điểm cố định nằm bên trong đường tròn. Qua M vẽ hai dây di động AB ,CD vuông góc với nhau. a) Chứng minh rằng \(AC^2+BD^2=AD^2+BC^2\) và \(AD^2+BC^2\) không đổi b) Gọi I là trung điểm của BC . Chứng minh rằng \(IO^2+IM^2=R^2\) suy ra quỹ tích của điểm I