Phép nhân và phép chia các đa thức

NH

cho M=(1+\(\dfrac{a}{a^2+1}\)) : (\(\dfrac{a}{a-1}\) - \(\dfrac{2a}{a^3-a^2+a-1}\))

a,tìm a để M thuộc Z

b,tìm a để M = 7;tìm a để M>0

NT
7 tháng 12 2022 lúc 0:22

a: \(M=\dfrac{a^2+a+1}{a^2+1}:\left(\dfrac{a}{a-1}-\dfrac{2a}{\left(a-1\right)\left(a^2+1\right)}\right)\)
\(=\dfrac{a^2+a+1}{a^2+1}:\dfrac{a^3+a^2-2a}{\left(a-1\right)\left(a^2+1\right)}\)

\(=\dfrac{a^2+a+1}{a^2+1}\cdot\dfrac{\left(a-1\right)\left(a^2+1\right)}{a\left(a+2\right)\left(a-1\right)}\)

\(=\dfrac{a^2+a+1}{a^2+2a}\)

Để M là số nguyên thì \(a^2+a+1⋮a^2+2a\)

\(\Leftrightarrow a^2+2a-a+1⋮a^2+2a\)

=>-a^2+a chia hết cho a^2+2a

=>-a^2-2a+3a chia hết cho a^2+2a

=>3a chia hết cho a^2+2a

=>3 chia hết cho a+2

=>\(a+2\in\left\{1;-1;3;-3\right\}\)

hay \(a\in\left\{-1;-3;-5\right\}\)

b: Để M=7 thì \(a^2+a+1=7a^2+14a\)

=>7a^2+14a-a^2-a-1=0

=>6a^2+13a-1=0

hay \(a=\dfrac{-13\pm\sqrt{193}}{12}\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DV
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết