Phép nhân và phép chia các đa thức

H24

a,Tìm x,y,z thỏa mãn: \(9x^2+y^2+2x^2-18x-6y+4z+20=0\)
b, Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\). Tính \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)

NT
28 tháng 6 2017 lúc 12:58

a, \(9x^2+y^2+2z^2-18x-6y+4z+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\left\{{}\begin{matrix}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{matrix}\right.\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

Vậy...

Bình luận (0)
NT
28 tháng 6 2017 lúc 12:59

b, Câu hỏi của Cry... - Toán lớp 8 | Học trực tuyến

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
HC
Xem chi tiết
NL
Xem chi tiết
TN
Xem chi tiết
HM
Xem chi tiết
YC
Xem chi tiết