ND

Cho M= 4 + 42 + 43+..............................+42016

CMR : M chia hết cho 105

PQ
21 tháng 4 2018 lúc 21:41

Ta có : 

\(M=4+4^2+4^3+...+4^{2016}\)

+) Chứng minh \(M⋮5\)

\(M=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2015}+4^{2016}\right)\)

\(M=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{2015}\left(1+4\right)\)

\(M=4.5+4^3.5+...+4^{2015}.5\)

\(M=5\left(4+4^3+...+4^{2015}\right)⋮5\)

+) Chứng minh \(M⋮21\)

\(M=\left(4+4^2+4^3\right)+...+\left(4^{2014}+4^{2015}+4^{2016}\right)\)

\(M=4\left(1+4+16\right)+...+4^{2014}\left(1+4+16\right)\)

\(M=4.21+...+4^{2014}.21\)

\(M=21\left(4+...+4^{2014}\right)⋮21\)

Từ hai phần chứng minh ta suy ra \(M⋮105\) ( vì cùng chia hết cho \(5\) và \(21\) nên chia hết cho \(5.21=105\) ) 

Vậy \(M⋮105\)

Chúc bạn học tốt ~ 

Bình luận (0)
ND
21 tháng 4 2018 lúc 21:33

giúp mình nha

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
TN
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết