Ta có :
\(M=4+4^2+4^3+...+4^{2016}\)
+) Chứng minh \(M⋮5\)
\(M=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2015}+4^{2016}\right)\)
\(M=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{2015}\left(1+4\right)\)
\(M=4.5+4^3.5+...+4^{2015}.5\)
\(M=5\left(4+4^3+...+4^{2015}\right)⋮5\)
+) Chứng minh \(M⋮21\)
\(M=\left(4+4^2+4^3\right)+...+\left(4^{2014}+4^{2015}+4^{2016}\right)\)
\(M=4\left(1+4+16\right)+...+4^{2014}\left(1+4+16\right)\)
\(M=4.21+...+4^{2014}.21\)
\(M=21\left(4+...+4^{2014}\right)⋮21\)
Từ hai phần chứng minh ta suy ra \(M⋮105\) ( vì cùng chia hết cho \(5\) và \(21\) nên chia hết cho \(5.21=105\) )
Vậy \(M⋮105\)
Chúc bạn học tốt ~