Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

NT

Cho \(\left(\Delta\right)\) :2x+y+1=0 và hai điểm A(0;3),B(1,5)

a) tìm điểm M trên \(\left(\Delta\right)\) sao cho \(\left|MA-MB\right|\) lớn nhất

b) tìm điểm N trên \(\left(\Delta\right)\) sao cho NA+NB nhỏ nhất

MN
28 tháng 5 2020 lúc 0:11

Ta nhận thấy A và B nằm cùng phía với Δ

a. M ∈ Δ => M(m ; -1 - 2m)

=> \(\overrightarrow{MA}\) = ( -m ; 4 + 2m) ; \(\overrightarrow{AB}\) = (1 ; 2)

Ta có : \(\left|MA-MB\right|\le AB\)

Dấu "=" xảy ra ⇔ A, M, B thẳng hàng

⇔ -m = \(\frac{4+2m}{2}\) ⇔ m = -1 => M ( -1 ; 1)

b. N ∈ Δ => N(n ; -1 - 2n)

Qua Δ lấy B' đối xứng với B => B' (\(\frac{-27}{5};\frac{9}{5}\))

=> \(\overrightarrow{B'A}\) = (\(\frac{27}{5};\frac{6}{5}\)) ; \(\overrightarrow{AN}\) = (n ; - 4 - 2n)

Mặt khác: NA + NB = NA + NB' ≥ AB'

Dấu "=" xảy ra ⇔ N, A, B' thẳng hàng

\(\frac{\frac{27}{5}}{n}=\frac{\frac{6}{5}}{-4-2n}\) ⇔ n = \(\frac{-9}{5}\) => N(\(\frac{-9}{5};\frac{13}{5}\))

Bình luận (0)

Các câu hỏi tương tự
DK
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
JE
Xem chi tiết
LP
Xem chi tiết