Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

NT

cho B(2;3) và đường thẳng \(\left(\Delta\right)\) :2x-y+3=0.Tìm tọa độ điểm A đối xứng của B qua đường thẳng \(\left(\Delta\right)\).

NL
30 tháng 5 2020 lúc 0:47

Đường thẳng \(\Delta\) nhận \(\left(2;-1\right)\) là 1 vtpt

Gọi d là đường thẳng qua B và vuông góc \(\Delta\Rightarrow d\) nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình d:

\(1\left(x-2\right)+2\left(y-3\right)=0\Leftrightarrow x+2y-8=0\)

Gọi C là giao điểm d và \(\Delta\Rightarrow\left\{{}\begin{matrix}2x-y+3=0\\x+2y-8=0\end{matrix}\right.\) \(\Rightarrow C\left(\frac{2}{5};\frac{19}{5}\right)\)

A đối xứng B qua \(\Delta\Leftrightarrow C\) là trung điểm AB

\(\Rightarrow\left\{{}\begin{matrix}x_A=2x_C-x_B=-\frac{6}{5}\\y_A=2y_C-y_B=\frac{23}{5}\end{matrix}\right.\) \(\Rightarrow C\left(-\frac{6}{5};\frac{23}{5}\right)\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
CG
Xem chi tiết
MV
Xem chi tiết
VK
Xem chi tiết
LP
Xem chi tiết
LC
Xem chi tiết