Cho lăng trụ đứng A B C . A ' B ' C ' có diện tích tam giác A B C bằng 5 . Gọi M , N , P lần lượt thuộc các cạnh A A ' , B B ' , C C ' và diện tích tam giác M N P bằng 10. Tính góc giữa hai mặt phẳng A B C và M N P .
A. 60 0
B. 30 0
C. 90 0
D. 45 0
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Các điểm M, N, P lần lượt thuộc các đường thẳng AA’,BB’,CC’ thỏa mãn diện tích của tam giác MNP bằng a 2 . Góc giữa hai mặt phẳng (MNP) và (ABCD) là
A. 60 o
B. 30 o
C. 45 o
D. 120 o
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có A B = 2 3 và AA’=2. Gọi M,N,P lần lượt là trung điểm của các cạnh A’B’, A’C’ và BC. Côsin của góc tạo bởi hai mặt phẳng (AB’C’) và (MNP) bằng
A. 6 13 65
B. 13 65 .
C. 17 13 65 .
D. 18 63 65 .
Cho hình lăng trụ tam giác ABC.A’B’C’ có AA’ = 1. Xét các điểm M,N,P thay đổi lần lượt trên các cạnh AA’, BB’, CC’ sao cho AM+BN+CP=1. Gọi I là điểm cố định mà mặt phẳng (MNP) luôn đi qua. Độ dài của vecto u → = I A → + I B → + I C → bằng
A. 3
B. 2
C. 9
D. 1
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a, góc giữa hai mặt phẳng (A’BC) và (ABC) bằng 60 o . Gọi M là trung điểm cạnh BC, N là trung điểm CC’. Tính thể tích khối chóp A.BB’C’C
A. a 3 3 4
B. a 3 3 2
C. a 3 3 8
D. a 3 3 6
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M, N, P lần lượt là các điểm thuộc các cạnh AA’, BB’, CC’ sao cho A M = 2 M A ' , N B ' = 2 N B , P C = P C ' . Gọi V 1 , V 2 lần lượt là thể tích của hai khối đa diện A B C M N P và A’B’C’MNP. Tính tỉ số V 1 V 2 .
A. V 1 V 2 = 2.
B. V 1 V 2 = 1 2 .
C. V 1 V 2 = 1.
D. V 1 V 2 = 2 3 .
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, AB = 4, BC = 6 và AA’ = 10. Gọi K, M, N lần lượt là trung điểm của các cạnh BB’, A’B’, BC. Thể tích khối tứ diện C’KMN là:
A. 15
B. 45
C. 5
D. 10
Cho hình lăng trụ ABC.A’B’C’ có A’.ABC là tứ diện đều cạnh a. Gọi M,N lần lượt là trung điểm của AA’ và BB’. Tính tan của góc giữa hai mặt phẳng (ABC) và (CMN).
A. 2 5
B. 3 2 4
C. 2 2 5
D. 4 2 5
Cho hình lăng trụ tam giác ABC.A’B’C’ có thể tích là V và độ dài cạnh bên là AA’=6 đơn vị. Cho điểm A1 thuộc cạnh AA’ sao cho AA1=2. Các điểm B1, C1 lần lượt thuộc cạnh BB’, CC’ sao cho BB1=x, CC1=y. Biết rằng thể tích khối đa diện ABC. A1B1C1 bằng 1/2V. Giá trị của x+y bằng
A. 10
B. 4
C. 16
D. 7