Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi T là tâm mặt cầu ngoại tiếp hình chóp S. ABCD. Hỏi góc giữa hai đường thẳng TB và BD nằm trong khoảng nào dưới đây
Cho hình chóp S. ABCD có đáy ABCD là hình vuông, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết rằng diện tích mặt cầu ngoại tiếp khối chóp S. ABCD là 4 π ( dm 2 ) . Khoảng cách giữa hai đường thẳng SD và AC gần với giá trị nào nhất sau đây?
Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB= a 3 và AD = a . Đường thẳng SA vuông góc với mặt phẳng đáy và SA=a. Thể tích khối cầu ngoại tiếp hình chóp S.BCD bằng?
Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a 3 , AD=a, SA vuông góc với mặt đáy và mặt phẳng (SBC) tạo với đáy một góc 60 o . Tính thể tích V của khối cầu ngoại tiếp khối chóp S.ABCD.
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết thể tích cho hình chóp S.ABCD là a 3 15 6 Góc giữa đường thẳng SC và mặt phẳng đáy (ABCD) là
A. 30 0
B. 45 0
C. 60 0
D. 120 0
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC.
A. a 3 2
B. a
C. a 3 4
D. a 2
Cho hình chóp S.ABCD đáy ABCD là hình chữ nhật cạnh AB = 2a, AD = a, ∆ S A D đều và nằm trong mặt phẳng vuông góc với đáy. Diện tích xung quanh của mặt cầu ngoại tiếp hình chóp S.ABCD là:
A. 16 π 3 a 2
B. 57 π 18 a 2
C. 48 π 9 a 2
D. 24 π 9 a 2
Cho khối chóp S.ABCD có đáy ABCD là hình vuông, BD = 2a vuông tại S và nằm trong mặt phẳng vuông góc với đáy, SC= a 3 Khoảng cách từ điểm B đến mặt phẳng (SAD) là
A. a 30 5
B. 2 a 21 7
C. 2a
D. a 3