PB

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi T là tâm mặt cầu ngoại tiếp hình chóp S. ABCD. Hỏi góc giữa hai đường thẳng TB và BD nằm trong khoảng nào dưới đây

CT
24 tháng 9 2019 lúc 11:07

Chọn đáp án A

+ Gọi O là tâm của hình vuông ABCD. Qua O ta dựng đường thẳng d vuông góc với mặt đáy.

+ Gọi E, K, F, H, N lần lượt là trung điểm của các đoạn thẳng SD, SC, BC, AD, EK

+ Ta có tam giác SDF là tam giác cân tại F. Vì FD = FS = a 5  (độc giả tự chứng minh)

Suy ra FE ⊥ SD

Mặt khác, ta có KE // FH (Vì cùng song song với CD). Nên 4 điểm K, E, F, H đồng phẳng

+ Trong mặt phẳng (KEFH), gọi T là giao điểm của FE và ON.

Ta có T là tâm mặt cầu ngoại tiếp hình chóp S. ABCD

+ Ta có tam giác EKO là tam giác đều cạnh a. Nên

Bán kính mặt cầu là

+ Xét tam giác vuông TOB vuông tại B, ta có

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết