H24

Cho hình vuông ABCD. Trên cạnh BC lấy điểm M, trên tia đối của tia DC lấy điểm N sao cho BM=DN.
a, CMR tam giác ABM=ADN
b,CMR tam giác AMN vuông cân
c,Tia phân giác của góc MAN cắt CD tại P. CMR MP=BM+DP
d,Gọi AP cắt MN tại I. CMR MP=BM+DP

NT
24 tháng 11 2023 lúc 12:00

a: Xét ΔABM vuông tại B và ΔADN vuông tại D có

AB=AD

BM=DN

Do đó: ΔABM=ΔADN

b: ΔABM=ΔADN

=>AM=AN và \(\widehat{MAB}=\widehat{NAD}\)

\(\widehat{MAB}+\widehat{DAM}=\widehat{BAD}=90^0\)

mà \(\widehat{MAB}=\widehat{NAD}\)

nên \(\widehat{DAM}+\widehat{DAN}=90^0\)

=>\(\widehat{MAN}=90^0\)

Xét ΔAMN có AM=AN và \(\widehat{MAN}=90^0\)

nênΔAMN vuông cân tại A

d: ΔAMN cân tại A

mà AI là đường phân giác

nên I là trung điểm của MN và AI\(\perp\)MN tại I

=>AP\(\perp\)MN tại I

Xét ΔPNM có

PI là đường cao

PI là đường trung tuyến

Do đó: ΔPNM cân tại P

=>PN=PM

=>PM=PD+DN=PD+BM

Bình luận (0)

Các câu hỏi tương tự
26
Xem chi tiết
PL
Xem chi tiết
HB
Xem chi tiết
H24
Xem chi tiết
HG
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
TB
Xem chi tiết
NH
Xem chi tiết