H24

Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lấy lần lượt các điểm M, N, P, Q
sao cho AM = BN = CP = DQ. Chứng minh:
1) MB = NC = PD = QA 2) Tứ giác MNPQ là hình vuông

NT
25 tháng 11 2023 lúc 19:06

1: AM+MB=AB

BN+NC=BC

CP+PD=CD

QD+QA=AD

mà AB=BC=CD=AD và AM=BN=CP=QD

nên BM=CN=PD=QA

2: Xét ΔMAQ vuông tại A và ΔNBM vuông tại B có

MA=NB

AQ=BM

Do đó: ΔMAQ=ΔNBM

=>MQ=MN(1)

Xét ΔMBN vuông tại B và ΔNCP vuông tại C có

MB=NC

BN=CP

Do đó: ΔMBN=ΔNCP

=>MN=NP(2)

Xét ΔNCP vuông tại C và ΔPDQ vuông tại D có

NC=PD

CP=DQ

Do đó: ΔNCP=ΔPDQ

=>NP=PQ(3)

Từ (1),(2),(3) suy ra MQ=MN=NP=PQ

ΔMAQ=ΔNBM

=>\(\widehat{AMQ}=\widehat{BNM}\)

mà \(\widehat{BNM}+\widehat{BMN}=90^0\)(ΔBMN vuông tại B)

nên \(\widehat{AMQ}+\widehat{BMN}=90^0\)

\(\widehat{AMQ}+\widehat{QMN}+\widehat{NMB}=180^0\)

=>\(90^0+\widehat{QMN}=180^0\)

=>\(\widehat{QMN}=90^0\)

Xét tứ giác MNPQ có

MN=NP=PQ=MQ

nên MNPQ là hình thoi

Hình thoi MNPQ có \(\widehat{QMN}=90^0\)

nên MNPQ là hình vuông

 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
CN
Xem chi tiết
ND
Xem chi tiết
MB
Xem chi tiết
GC
Xem chi tiết
TK
Xem chi tiết
NH
Xem chi tiết