KN

Cho hình vuông ABCD. Gọi E là một điểm nằm giữa A, B. Tia DE và tia CB cắt nhau ở F. Kẻ đường thẳng qua D và vuông góc với DE, đường thẳng này cắt đường thẳng BC tại K. Chứng minh rằng:
a) Tam giác DEK vuông cân tại D
b) \(\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\) không đổi khi E chuyển động trên AB.

NT
6 tháng 11 2023 lúc 18:34

a: \(\widehat{ADE}+\widehat{EDC}=90^0\)

\(\widehat{KDC}+\widehat{EDC}=90^0\)

Do đó: \(\widehat{ADE}=\widehat{KDC}\)

Xét ΔADE vuông tại A và ΔCDK vuông tại C có

DA=DC

\(\widehat{ADE}=\widehat{KDC}\)

Do đó: ΔADE=ΔCDK

=>DE=DK

Xét ΔDEK có

\(\widehat{EDK}=90^0\)

DE=DK

Do đó: ΔDEK vuông cân tại D

b: Xét ΔDFK vuông tại D có DC là đường cao

nên \(\dfrac{1}{DK^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\)

=>\(\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\) không đổi

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
LM
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
PP
Xem chi tiết