Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và Tia CB cắt nhau ở K. Kẻ đường thẳng qua D, vuông goác với DI. Đường thẳng này cắt đường thẳng BC tại M
a)tính số đo góc DMI
b)CM DI.DK=DC.KM
c)CM \(\dfrac{1}{DI^2}\)+\(\dfrac{1}{DK^2}\)có giá trị không đổi khi I di chuyển trên AB
Cho ∆DEF vuông tại D, đường cao DH. Biết EH=9 cm, HF=16 cm
a. Tính DH, DE, DF, góc F
b. Trên tia đối của tia DE lấy điểm I sao cho góc DFI = 30° (Vẽ đúng số đo). Tính DI, IF
c. Vẽ DK là phân giác góc HDK (K thuộc EF) M là hình chiếu của F lên DK. Chứng minh: 1/FM^2 = 1/FD^2 + 1/FK^2
Giúp mình câu c với ạ, lm hoài mà ko ra 😭😭😭😭😭
cho tam giác ABC vuống tại A dường có AH. biết AC=12cm BC=15cm a tính HA,HB,HC b gọi E.F là hình chiếu vuống góc của H lần lượt lên AB,AC .
a tính HA,HB,HC
b gọi E.F là hình chiếu vuống góc của H lầ lượt lên AB,AC .CM AE.AB=AF.AC
c CM HE2+HF2=HB.HC
Bài 2 cho hình vuông ABCD. I là một điểm thuộc BC. AI cắt CD tại M. kẻ DH và BK cùng vuông với AI
a CM AH=BK
b CM HD.AI luôn không đổi khi I di động trên cạnh BC
1. Cho tam giác ABC vuông tại A có AB = 9 cm , BC = 15 cm , AH là đường C10 ( H thuộc cạnh BC ) . Tính BH , CH , AC và AH ,
2. Cho tam giác ABC vuông tại A có AC = 5 cm , AB = 4 cm . Tính : a ) Cạnh huyền BC . b ) Hình chiếu của AB và AC trên cạnh huyền . c ) Đường cao AH .
3. Cho tam giác ABC vuông tại A có BC = 40 cm , AC = 36 cm . Tính AB , BH , CH và AH ,
4. Cho tam giác ABC vuông tại A có BC = 24 cm . Tính AB , AC , cho biết 2 AB = -AC .
5. Cho tam giác ABC vuông tại A có AH là đường cao . BH = 10 cm , CH = 42 cm . Tính BC , AH , AB và AC ,
6. Cho đường tròn tâm O bán kính R = 10 cm . A , B là hai điểm trên đường tròn ( O ) và I là trung điểm của đoạn thẳng AB . a ) Tính AB nếu OI = 7 cm . b ) Tính OI nếu AB = 14 cm .
Cho tam giác cân ABC, AB = AC = 10 cm, BC = 16. Trên đường cao AH lấy điểm I sao cho \(AI=\dfrac{1}{3}AH\). Vẽ tia Cx song song với AH, Cx cắt tai BI tại D
a) Tính các góc của tam giác ABC
b) Tính diện tích tứ giác ABCD
Cho tam giác ABC vuông tại A có góc B = 2 góc C và BC = a (a > 0)
a/ Tính AB theo a
b/ Kẻ đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB,AC. Chứng minh AE.AB=À=AC
c/ Qua A kẻ đường thẳng BC, cắt tia phân giác của góc ABC tại D. Gọi I,K là trung điểm của AC,BD. Tính IK theo a.
Help me I need right now PLEASE!!!
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc với AE tại A, cắt tia CD tại F.
a) Chứng minh tam giác AEF cân.
b) Kẻ đường trung tuyến AI của tam giác AEF . Tia AI cắt cạnh CD tại K. Chứng minh tam giác AKF đồng dạng với tam giác CAF.
c) Cho AB = 4 cm, \(BE=\dfrac{3}{4}BC\). Tính diện tích của tam giác AEF.
d) Gọi J là giao điểm của tia AE và tia DC. Chứng minh rằng tổng \(\dfrac{1}{AE^2}+\dfrac{1}{AJ^2}\) không đổi khi E di động trên cạnh BC.
Cho hình vuông ABCD có độ dài cạnh 3cm. Lấy điểm E trên cạnh BC sao cho DAE=60°.Kẻ DH vuông AE (H € AE) AE cắt DC tại F.
a, Tính độ dài DH, AH, HF( làm tròn đến số thập phân thứ nhất)
b, CM 1/DH2= 1/DC2+1/DF2
cho ΔABC vuông tại A có B=60 độ BC=6 cm
a, tính AB,AC
b,Kẻ đường cao AH củaΔABC Tính HB,HC
c,trên tia đối của tia BA lấy điểm D sao choDB=BC .CM\(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
d, từ A kẻ đường thẳng // vs phân giác của CBD cắt CD tại K. CM \(\dfrac{1}{KD.KC}=\dfrac{1}{AC^2}+\dfrac{1}{AD^2}\)
CHỈ CẦN GIÚP MK CÂU d THÔI