Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC sao cho A M A B = A N A C ; gọi I và J lần lượt là trung điểm của BD, CD. Tứ giác MNJI là hình gì. Tìm điều kiện để tứ giác MNJI là hình bình hành.
Cho hình tứ diện ABCD. Gọi M N , lần lượt là trung điểm của AB CD , .Tìm giao tuyến của các cặp mặt phẳng sau : 1. (ABN )và ( ACD ) 2. ( ABN ) và( CDM )
Cho hình tứ diện ABCD. Gọi M , N lần lượt là trung điểm các cạnh AB và CD. Biết AB=CD=AN=BN=CM=MD =a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng AB và CD bằng
A. a 3 3
B. a 3 2
C. a 3 6
D. a 2 2
Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC sao cho A M A B = A N A C ; gọi I và J lần lượt là trung điểm của BD, CD. Chứng minh rằng: BC // (MNI)
Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm các cạnh AB và AC. E là điểm trên cạnh CD với ED=3EC. Thiết diện tạo bởi mp(MNE) và tứ diện ABCD là:
A. Tam giác MNE
B. Tứ giác MNEH với H là điểm bất kì trên cạnh BD
C. Hình bình hành MNEH với H là điểm trên cạnh BD mà EH//BC
D. Hình thang MNEH với H là điểm trên cạnh BD mà EH//BC
Cho hình tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của AB, BC, CD. Thiết diện của tứ diện đi qua ba điểm M, N, P là:
A. hình thang
B. hình bình hành
C. hình thoi
D. hình chữ nhật
Cho tứ diện ABCD. Gọi M,N,P lần lượt là trung điểm các cạnh BC,CA và AD (tham khảo hình vẽ bên). Biết M N P ^ = 150 o Góc giữa hai đường thẳng AB và CD là
A. 30 o
B. 45 o
C. 90 o
D. 60 o
Cho tứ diện ABCD. Các điểm M và N lần lượt là trung điểm của AB và CD. Không thể kết luận được điểm G là trọng tâm của tứ diện ABCD trong trường hợp
A. GM = GN
B. G M → + G N → = 0 →
C. G A → + G B → + G C → + G D → = 0
D. P G → = 1 / 4 ( P A → + P B → + P C → + P D → ) , với P là điểm bất kì.
Cho tứ diện ABCD. Gọi M, N, P, và Q lần lượt là trung điểm của AB, AC, CD và DB.
Bộ ba vecto đồng phẳng là:
A. A B → , B C → , A D →
B. M P → , B C → , A D →
C. A C → , M P → , B D →
D. M P → , P Q → , C D →