Cho tứ diện ABCD. Gọi M,N,P lần lượt là trung điểm các cạnh BC,CA và AD (tham khảo hình vẽ bên). Biết M N P ^ = 150 o Góc giữa hai đường thẳng AB và CD là
A. 30 o
B. 45 o
C. 90 o
D. 60 o
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và AB =2a, BC =a. Các cạnh bên của hình chóp bằng nhau và bằng a 2 . Gọi E và F lần lượt là trung điểm của AB và CD; K là điểm bất kỳ trên BC. Khoảng cách giữa hai đường thẳng EF và SK là:
A. a 3 3
B. a 6 3
C. a 15 5
D. a 21 7
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=2a, BC=a. Các cạnh bên của hình chóp bằng nhau và bằng a 2 . Gọi M, N lần lượt là trung điểm của các cạnh AB, CD. K là điểm trên cạnh AD sao cho KD=2KA. Tính khoảng cách giữa hai đường thẳng MN và SK.
Cho hình lăng trụ tam giác đều ABC.A′B′C′ có tất cả các cạnh bằng a. Gọi M,N lần lượt là trung điểm các cạnh AB,B′C′ (tham khảo hình vẽ bên). Côsin góc giữa hai đường thẳng MN và AC bằng
A. 1 3
B. 5 3
C. 2 3
D. 5 5
Cho tứ diện ABCD có AB = CD = 2a. Gọi M, N lần lượt là trung điểm của BC, AD và MN = a 3 . Tính góc tạo bởi hai đường thẳng AB và CD
A. 300
B. 450
C. 600
D. 900
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của AC và B’C’ (tham khảo hình vẽ bên).
Khoảng cách giữa hai đường thẳng MN và B’D’ bằng
A. 5 a
B. 5 a 5
C. 3a.
D. a 3
Cho tứ diện ABCD có AB=2a; \(CD=2\sqrt{2}a\). M,N lần lượt là trung điểm của BC,AD. \(MN=a\sqrt{5}\). Tính số đo góc giữa hai đường thẳng AB và CD
Cho hình chóp tứ giác đều S.ABCD có tất cả cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng SA và CD bằng
A. a 6 6
B. a 3 3
C. a 3 6
D. a 6 3
Cho tứ diện ABCD có AB = CD =a. Gọi M và N lần lượt là trung điểm của AD và BC. Xác định độ dài đoạn thẳng MN để góc giữa hai đường thẳng AB và MN bằng 30 0
A. MN = a 2
B. MN = a 3 2
C. MN = a 3 3
D. MN = a 4