TP

Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân Các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao?

NT
11 tháng 12 2023 lúc 20:07

ABCD là hình thoi

=>AC vuông góc với BD tại trung điểm của mỗi đường

=>AC\(\perp\)BD tại O và O là trung điểm chung của AC và BD

Ta có:ABCD là hình thoi

=>AB//CD và AD//BC và AB=BC=CD=DA

Xét ΔEBO vuông tại E và ΔGDO vuông tại G có

BO=DO

\(\widehat{EBO}=\widehat{GDO}\)

Do đó: ΔEBO=ΔGDO

=>EO=GO

Ta có: ΔEBO=ΔGDO

=>\(\widehat{EOB}=\widehat{GOD}\)

mà \(\widehat{GOD}+\widehat{GOB}=180^0\)(hai góc kề bù)

nên \(\widehat{EOB}+\widehat{GOB}=180^0\)

=>E,O,G thẳng hàng

mà OE=OG

nên O là trung điểm của EG

Xét ΔOHD vuông tại H và ΔOFB vuông tại F có

OD=OB

\(\widehat{ODH}=\widehat{OBF}\)(hai góc so le trong, AD//BC)

Do đó: ΔOHD=ΔOFB

=>OH=OF

Ta có; ΔOHD=ΔOFB

=>\(\widehat{HOD}=\widehat{FOB}\)

mà \(\widehat{FOB}+\widehat{FOD}=180^0\)

nên \(\widehat{HOD}+\widehat{FOD}=180^0\)

=>H,O,F thẳng hàng

mà OH=OF

nên O là trung điểm của HF

ABCD là hình thoi

=>AC là phân giác của góc BAD

=>\(\widehat{BAC}=\widehat{DAC}\)

Xét ΔAEO vuông tại E và ΔAHO vuông tại H có

AO chung

\(\widehat{EAO}=\widehat{HAO}\)

Do đó: ΔAOE=ΔAOH

=>OH=OE

mà \(OH=\dfrac{HF}{2};OE=\dfrac{EG}{2}\)

nên HF=EG

Xét tứ giác EFGH có

O là trung điểm chung của EF và GH

=>EFGH là hình bình hành

Hình bình hành EFGH có HF=EG

nên EFGH là hình chữ nhật

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
UN
Xem chi tiết
ND
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
LN
Xem chi tiết
NH
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết