a: Sửa đề: K là hình chiếu của A lên CD
Xét ΔAHB vuông tại H và ΔAKD vuông tại K có
AB=AD
góc ABH=góc ADK
=>ΔAHB=ΔAKD
=>AH=AK
b: góc BAH=90-60=30 độ
góc DAK=90-60=30 độ
=>góc HAK=120-30-30=60 độ
=>ΔAHK đều
a: Sửa đề: K là hình chiếu của A lên CD
Xét ΔAHB vuông tại H và ΔAKD vuông tại K có
AB=AD
góc ABH=góc ADK
=>ΔAHB=ΔAKD
=>AH=AK
b: góc BAH=90-60=30 độ
góc DAK=90-60=30 độ
=>góc HAK=120-30-30=60 độ
=>ΔAHK đều
Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của D trên cạnh AB, AC. a) Chứng minh tứ giác ANDM là hình chữ nhật. b) Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao. c) Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN
Cho tam giác abc cân tại A có AH là đường cao. Gọi M và N lần lượt là trung điểm của AB và AC. Biết AH=6cm, BC=8cm.
a)Tính diện tích tam giác ABC và độ dài cạnh MN.
b) Gọi D là điểm đối xứng của H qua D. Chứng minh tứ giác AHBD là hình chữ nhật.
c) Gọi E là điểm đối xứng của A qua H. Chứng minh tứ giác ABEC là hình thoi.
d) Gọi F là hình chiếu của H lên cạnh BC, gọi I, K lần lượt là trung điểm của HF và CF. Chứng minh EI vuông góc với BF.
Cho tam giác ABC có góc A=90 độ. Gọi I, J lần lượt là hình chiếu vuông góc của H lên AB, AC.
a) tứ giác AIHJ là hình gì? Vì sao?
b) AH=IJ
c) gọi K là trung điểm đối xứng với H qua AB, M là trung điểm đối xứng với H qua AC
Chứng minh: A là trung điểm của MK và MK= 2.IJ
Cho Tam giác ABC cân tại A có AH là đường cao. Gọi M,N lần lượt là trung điểm AB và AC. Gọi K là điểm đối xứng của H qua M a) chứng minh AHBK là hình chữ nhật b) Tứ giác AKHC là hình gì? Vì sao c) Chứng minh AMHN là hình thoi d) tính diện tích Tam giác ABC biết AH=4cm, BC=8cm
Cho tam giác ABC có góc B nhọn .Gọi D là điểm đối xứng của B qua trung điểm AC. Gọi H,K lần lượt là hình chiếu vuông góc của A trên đoạn thẳng BC,CD.
a) cm ABCD là hình gì? Vì sao?
b) cm: tam giác AHB~tam giác ADK, tam giác AHK~tam giác DCA
c) Khi góc B =30°. Tính tỷ số diện tích tam giác AHK và diện tích tứ giác ABCD
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
Cho hình thang ABCD có góc A = góc D = 90 độ, CD = 2AB = 2CD. Gọi H là hình chiếu của D trên AC. M,P,Q lần lượt là trung điểm của CD,HC,HD.
a) Tứ giác ABMD là hình gì ? Vì sao ?
b) Chứng minh : tam giác BDC vuông cân
c) Tứ giác DMPQ là hình gì ? Vì sao ?
d) Chứng minh : AQ vuông góc với DP
Cho tam giác ABC vuông tại A, có AB = 15cm, AC = 20cm.Vẽ đường cao AH và đường trung tuyến AM của tam giác ABC. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
a/Tính BC và AM ?
b/Chứng minh : Tứ giác AEHD là hình chữ nhật
c/Kẻ MI vuông góc AC , gọi K đối xứng với M qua AC .Chứng minh : Tứ giác AKCM là hình thoi
d/ Chứng minh : AM vuông góc DE
Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi I vs K lần lượt là hình chiếu của H trên AB và AC.
a, Tứ giác AIHK là hình gì ? Vì sao ?
b, So sánh góc AIK và góc ACB
c, Cho BC= 10cm, AH= 4cm. Tính diện tích tam giác AIK
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD
Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.
Mong mn giúp mk vs ah