PB

Cho hình thoi ABCD có B A D ^ = 60 ° , A B = 2 a . Gọi H là trung điểm của AB. Trên đường thẳng d vuông góc với mặt phẳng (ABCD) tại H lấy điểm S thay đổi khác H. Trên tia đối của tia BC lấy điểm M sao cho B M = 1 4 B C . Tính theo a độ dài của SH để góc giữa SC và (SAD) có số đo lớn nhất

A. S H = 21 4 4 a .

B. S H = 21 4 4 a .

C. S H = 21 4 a .

D. S H = 21 4 a .

CT
29 tháng 1 2018 lúc 8:43

Đáp án A

Gọi φ  là góc giữa SC và (SAD), N là giao điểm của HM và AD, K là hình chiếu vuông góc của H trên SN, I là giao điểm của HC với AD. Gọi E là điểm đối xứng với I qua K.

Ta có  M B = 1 4 B C = a 2 , H B = a , H B M ^ = B A D ^ = 60 °

⇒ H M = H B 2 + M B 2 − 2 H B . M B . c o s H B M ^

⇒ H M = a 2 + a 2 4 − 2 a . a 2 . cos 60 ° = 3 2 a

⇒ H M 2 + M B 2 = 3 2 a 2 + a 2 2 = a 2 = H B 2

  ⇒ Δ H M B vuông tại M

  ⇒ H M ⊥ M B hay M N ⊥ B C .

Vì  S H ⊥ A D do  S H ⊥ A B C D M N ⊥ A D do  M N ⊥ B C ⇒ A D ⊥ S M N ⇒ A D ⊥ H K , mà H K ⊥ S N  nên H K ⊥ S A D . Lại có HK là đường trung bình của Δ I C E  nên H K // C E . Suy ra C E ⊥ S A D  tại ESE là hình chiếu của SC trên mặt phẳng (SAD).

Vậy φ = S C , S A D ^ = S C , S E ^ = C S E ^ .

Đặt  S H = x , x > 0   . Do Δ S H N  vuông tại HHK là đường cao nên ta có

1 H K 2 = 1 S H 2 + 1 H N 2 ⇒ H K = S H . H N S H 2 + H N 2 = 3 a x 4 x 2 + 3 a 2 ⇒ C E = 2 H K = 2 3 a x 4 x 2 + 3 a 2

Do Δ S H C  vuông tại H nên

S C = S H 2 + H C 2 = S H 2 + H M 2 + M C 2 = x 2 + 3 2 a 2 + 5 a 2 2 = x 2 + 7 a 2

  Δ S E C vuông tại E nên  sin φ = sin C S E ^ = E C S C = 2 3 a x 4 x 2 + 3 a 2 x 2 + 7 a 2

⇒ sin φ = 2 3 a x 4 x 4 + 21 a 4 + 31 a 2 x 2 ≤ 2 3 a x 4 21 a 2 x 2 + 31 a 2 x 2 = 2 3 4 21 + 31

Dấu “=” xảy ra khi và chỉ khi 4 x 4 = 21 a 4 ⇔ x 4 = 21 4 a 4 ⇔ x = 21 4 4 a .

Vậy góc φ  đạt lớn nhất khi   sin φ đạt lớn nhất, khi đó  S H = 21 4 4 a

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết