Ôn tập: Tam giác đồng dạng

TV

Cho hình thang vuông ABCD ( góc A = góc D= \(90^o\)). M là trung điểm của AD và góc BMC=\(90^o\). Cho biết AD=2a. Chứng minh rằng:
a) AB.CD=\(a^2\)
b) tam giác \(MAB\sim\) tam giác CMB và BM là phân giác góc ABC

H24
9 tháng 8 2018 lúc 19:35

a, Vì M là trung điểm của BC, N là trung điểm của AD .

⇒⇒ MN là đường trung bình của hình thang ABCD .

⇒MN⇒MN//ABAB//CDCD

mà theo gt Aˆ=900=>AB⊥ADA^=900=>AB⊥AD

=>MN⊥AD=>MN⊥AD

Trong tam giác MAD có :

MN là đường trung trực ( cmt )

MN là đường trung tuyến ( vì N là trung điểm của AD )

⇒ΔMAD⇒ΔMAD cân tại M .

b,

Có ΔMADΔMAD cân tại M −>MADˆ=MDAˆ−>MAD^=MDA^

mà Aˆ=DˆA^=D^

=>Aˆ−MADˆ=Dˆ−MDAˆ=>A^−MAD^=D^−MDA^

=>MABˆ=MDCˆ(đpcm)=>MAB^=MDC^(đpcm).

Bình luận (0)

Các câu hỏi tương tự
CN
Xem chi tiết
NC
Xem chi tiết
CD
Xem chi tiết
DV
Xem chi tiết
VQ
Xem chi tiết
CD
Xem chi tiết
TM
Xem chi tiết
VL
Xem chi tiết
AC
Xem chi tiết