DD
 

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi M, N, P, Q lần lượt là trung điểm các đoạn thẳng AD, BD, AC, BC.

a) Chứng minh bốn điểm M, N, P, Q thẳng hàng.

b) Chứng minh tứ giác ABPN là hình thang cân.

c) Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật

  
NT
20 tháng 10 2023 lúc 18:41

a: Xét ΔDAB có M,N lần lượt là trung điểm của DA,DB

=>MN là đường trung bình

=>MN//AB và \(MN=\dfrac{AB}{2}\)

Xét ΔCAB có P,Q lần lượt là trung điểm của CA,CB

=>PQ là đường trung bình

=>PQ//AB và \(PQ=\dfrac{AB}{2}\)

Xét hình thang ABCD có

M,Q lần lượt là trung điểm của AD,BC

=>MQ là đường trung bình

=>MQ//AB//CD và \(MQ=\dfrac{AB+CD}{2}\)

MQ//AB

MN//AB

Do đó: M,N,Q thẳng hàng(1)

PQ//AB

MQ//AB

Do đó: M,P,Q thẳng hàng(2)

Từ (1),(2) suy ra M,N,P,Q thẳng hàng

b: Gọi O là giao của AC và BD

Xét ΔABD và ΔBAC có

AB chung

BD=AC

AD=BC

Do đó: ΔABD=ΔBAC

=>\(\widehat{OBA}=\widehat{OAB}\)

=>OA=OB

OA+OC=AC

OB+OD=BD

mà OA=OB và AC=BD

nên OC=OD

Xét ΔOCD có NP//DC
nên \(\dfrac{ON}{OD}=\dfrac{OP}{OC}\)

mà OD=OC

nên ON=OP

ON+OB=BN

OA+OP=AP

mà ON=OP và OA=OB

nên BN=AP

Xét hình thang ABPN có PA=BN

nên ABPN là hình thang cân

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
DH
Xem chi tiết
NC
Xem chi tiết
LL
Xem chi tiết
DP
Xem chi tiết
PA
Xem chi tiết
TA
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết