a) Xét ΔADH vuông tại H và ΔBCK vuông tại K có
AD=BC(ABCD là hình thang cân)
\(\widehat{D}=\widehat{C}\)(ABCD là hình thang cân)
Do đó: ΔADH=ΔBCK(Cạnh huyền-góc nhọn)
Suy ra: AH=BK(hai cạnh tương ứng)
Xét tứ giác AHKB có
AH//BK
AH=BK
Do đó: AHKB là hình bình hành
mà \(\widehat{AHK}=90^0\)
nên AHKB là hình chữ nhật
b) Ta có: AB=HK(AHKB là hình chữ nhật)
mà AB=8cm(gt)
nên HK=8cm
\(\Leftrightarrow DH=CK=\dfrac{DC-HK}{2}=\dfrac{14-8}{2}=\dfrac{6}{2}=3\left(cm\right)\)
\(\Leftrightarrow HC=HK+KC=8+3=11\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHD vuông tại H, ta được:
\(AH^2+HD^2=AD^2\)
\(\Leftrightarrow AH^2=5^2-3^2=16\)
hay AH=4(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow AC^2=4^2+11^2=137\)
hay \(AC=\sqrt{137}\left(cm\right)\)
\(\Leftrightarrow BD=\sqrt{137}\left(cm\right)\)