HH

Cho hình thang cân AB=8cm ,AD=5cm ,CD=14cm .Các đường cao AH ,BK

 a, C/m ABKH là hình chữ nhật 

b, Tính AC và BD

NT
29 tháng 7 2021 lúc 20:30

a) Xét ΔADH vuông tại H và ΔBCK vuông tại K có

AD=BC(ABCD là hình thang cân)

\(\widehat{D}=\widehat{C}\)(ABCD là hình thang cân)

Do đó: ΔADH=ΔBCK(Cạnh huyền-góc nhọn)

Suy ra: AH=BK(hai cạnh tương ứng)

Xét tứ giác AHKB có 

AH//BK

AH=BK

Do đó: AHKB là hình bình hành

mà \(\widehat{AHK}=90^0\)

nên AHKB là hình chữ nhật

b) Ta có: AB=HK(AHKB là hình chữ nhật)

mà AB=8cm(gt)

nên HK=8cm

\(\Leftrightarrow DH=CK=\dfrac{DC-HK}{2}=\dfrac{14-8}{2}=\dfrac{6}{2}=3\left(cm\right)\)

\(\Leftrightarrow HC=HK+KC=8+3=11\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHD vuông tại H, ta được:

\(AH^2+HD^2=AD^2\)

\(\Leftrightarrow AH^2=5^2-3^2=16\)

hay AH=4(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow AC^2=4^2+11^2=137\)

hay \(AC=\sqrt{137}\left(cm\right)\)

\(\Leftrightarrow BD=\sqrt{137}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
TP
Xem chi tiết
VU
Xem chi tiết
CQ
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
PH
Xem chi tiết
HA
Xem chi tiết
YK
Xem chi tiết