CT

Cho hình thang ABCD , đáy lớn AB=3a, đáy nhỏ CD=a, cạnh AD=a, Â =60°. M,N lần lượt là trung điểm AB,CD. Tính độ dài BC, MN

NT
13 tháng 10 2023 lúc 12:57

Xét ΔADB có 

\(cosA=\dfrac{AB^2+AD^2-DB^2}{2\cdot AB\cdot AD}\)

=>\(\dfrac{a^2+9a^2-DB^2}{2\cdot a\cdot3a}=\dfrac{1}{2}\)

=>\(10a^2-DB^2=3a^2\)

=>\(DB=a\sqrt{7}\)

Xét ΔABD có

\(cosABD=\dfrac{BA^2+BD^2-AD^2}{2\cdot BA\cdot BD}\)

\(=\dfrac{9a^2+7a^2-a^2}{2\cdot3a\cdot a\sqrt{7}}=\dfrac{15a^2}{6a^2\cdot\sqrt{7}}=\dfrac{15}{6\sqrt{7}}=\dfrac{5}{2\sqrt{7}}\)

=>\(cosCDB=\dfrac{5}{2\sqrt{7}}\)(do \(\widehat{ABD}=\widehat{CDB}\) vì AB//CD)

Xét ΔCDB có \(cosCDB=\dfrac{DB^2+DC^2-BC^2}{2\cdot DB\cdot DC}\)

=>\(\dfrac{5}{2\sqrt{7}}=\dfrac{7a^2+a^2-BC^2}{2\cdot a\sqrt{7}\cdot a}\)

=>\(\dfrac{8a^2-BC^2}{2a^2\sqrt{7}}=\dfrac{5}{2\sqrt{7}}\)

=>\(\dfrac{8a^2-BC^2}{a^2}=5\)

=>\(8a^2-BC^2=5a^2\)

=>\(BC^2=3a^2\)

=>\(BC=a\sqrt{3}\)

Bình luận (0)

Các câu hỏi tương tự
LA
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
ND
Xem chi tiết
HC
Xem chi tiết
NH
Xem chi tiết