Xét ΔOAB và ΔOCD có
\(\widehat{AOB}=\widehat{COD}\)
\(\widehat{OAB}=\widehat{OCD}\)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{1}{2}\)
Vì ABCD là hình thang có AC cắt BD tại O
nên \(S_{AOD}=S_{BOC}=15\left(cm^2\right)\)
\(\dfrac{OA}{OC}=\dfrac{1}{2}\)
=>\(S_{AOB}=\dfrac{1}{2}\cdot S_{BOC}\)
=>\(S_{AOB}=\dfrac{1}{2}\cdot15=7,5\left(cm^2\right)\)
\(\dfrac{OA}{OC}=\dfrac{1}{2}\)
=>\(\dfrac{S_{OAD}}{S_{DOC}}=\dfrac{AO}{OC}=\dfrac{1}{2}\)
=>\(S_{DOC}=30\left(cm^2\right)\)
\(S_{ABCD}=S_{AOB}+S_{BOC}+S_{DOC}+S_{AOD}\)
\(=30+15+15+7,5=52,5\left(cm^2\right)\)
Đúng 0
Bình luận (0)