Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hình thang vuông ABCD có \(\widehat{A}=\widehat{D}=90^o\). Kẻ \(BH\perp CD\)tại H.
a) Chứng minh tứ giác ABHD là hình chữ nhật.
b) Cho biết AB = 3cm, BC = 5cm, CD = 6cm. Tính diện tích tứ giác ABHD.
c) Gọi E là giao điểm của AH và BD, M là trung điểm của BC và N là điểm đối xứng của M qua E. Chứng minh tứ giác CDNM là hình bình hành.
d) Kẻ \(CK\perp BD\)tại K. Gọi I là điểm đối xứng với K qua M. Chứng minh \(KH\perp IH\).
Cho hình thang ABCD ( A B / / C D ) c ó A B = A D = C D / 2 . Gọi M là trung điểm của CD và H là giao điểm của AM và BD.
a) Chứng minh tứ giác ABMD là hình thoi
b) Chứng minh BD ⊥ BC
c) Chứng minh ΔAHD và ΔCBD đồng dạng
d) Biết AB = 2,5cm; BD = 4cm. Tính độ dài cạnh BC và diện tích hình thang ABCD.
Cho hình thang ABCD (AB//CD) có AB= 4cm, BD= 6cm, CD =9cm. Gọi I là giao điểm của AC và BD
a) chứng minh IA. IB = IC. ID
b) chứng minh tam giác ABD đồng dạng với tam giác BCD
c) Biết diện tích tam giác ABD bằng 16cm . Tính diện tích hình thang ABCD
d) tính số đo góc B của hình thang ABCD biết góc ADB bằng 42 độ
1.Cho tam giác ABCcân tại A có AB = AC = 100cm, BC = 120cm. Hai đường cao AD, BE cắt nhau tại H.a)Tìm các tam giác đồng dạng với tam giác BDHb)Tình độ dài các đoạn: HD, AH, BH, EH
2.Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Đường cao AH, đường phân giác BDa)Tình độ dài AD, DCb)Gọi I là giao điểm của AH và BD. C/m: AB.BI = BD.HBc)C/m: Tam giác AID cân
3.Cho hình thang cân ABCD (AB//CD), AB < CD. Đường cao BH chia cạnh CD thành 2 đoạn DH = 16cm, HC = 9cm. Biết BD vuông góc BC.a)Tính đường chéo AC và BD của hình thangb)Tính diện tích hình thangc)Tính chu vi hình thang
a. Cho Tam giác ABC vuông tại A, từ điểm H trên cạnh AC kẻ HK ^ BC tại K. Chứng minh: AB. KC = KH. AC.
b. Cho hình thang ABCD (AB//CD, AB < CD) có AB = 4cm, CD = 16cm, BD = 8cm. Chứng minh: góc DAB và góc DBC.
c. Cho ∆ABC nhọn , hai đường cao AH và BK cắt nhau tại I. Chứng minh: CA.BK = AH.BC.
Bài 4: Cho hình chữ nhật ABCD, có AB = 8cm, BC = 6cm. Từ A kẻ đường thẳng vuông góc với BD tại H, cắt CD tại M
a. Chứng minh: \(AD^2=DH.DB\). Tính HD, HB
b. Chứng minh: MD.DC = HD.BD
c. Tính diện tích tam giác MDB
d. Gọi I, K lần lượt là trung điểm của AB và DM. Chứng minh I, H, K thẳng hàng
Cho hình thang ABCD (AB // CD) có AB = AD = CD/2. Gọi M là trung điểm của CD và H là giao điểm của AM và BD. a) Chứng minh tứ giác ABMD là hình thoi b) Chứng minh BD ⊥ BC c) Chứng minh ΔAHD và ΔCBD đồng dạng d) Biết AB = 2,5cm; BD = 4cm. Tính độ dài cạnh BC và diện tích hình thang ABCD.
Cho hình thang vuông ABCD ( góc A = góc D = 90), AB=4cm,CD=9cm,AD=6cm a) CM: tam giác BAD đồng dạng tam giác ADC b) CM: AC vuông góc với BD c) Gọi O là giao điểm của AC và BD. Tính tỉ số diện tích 2 hai tam giác AOB và COD. d) Gọi K là giao điểm của DA và CB. Tính KA.
1. Cho hình chữ nhật ABCD. Vẽ AH vuông góc BD (H thuộc BD), HK // CD (K thuộc BC).
a) Chứng minh tam giác ADH đồng dạng với tam giác DBC.
b/ Chứng minh CD.BK = AH.BH.
c/ Cho biết AB=5cm, HB-4cm. Tính BK?
2. Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác cân ở A, AB=5cm. BC=6cm và AA' = 7cm. Gọi M, M' lần lượt là trung điểm của BC và BC.
a/ Chứng minh MM' song song với mặt phẳng ABB'A'
b/ Tính thể tích của hình lăng trụ đứng trên.