1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.
2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang
3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.
4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.
a) tính các góc của hình thang
b) biết AB=5 cm. tính CD
5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.
a) tính các góc của hình thang
b) biết AB=3cm. tính độ dài các cạnh BC,CD.
6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.
a) chứng minh ằng HD=KC.
7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.
a) tú giác BEDC là hình gì?Vì sao?
b)Chứng minh BE=ED=DC.
c) biết góc A=500. Tính các góc của tứ giác BEDC.
8. cho tam giác đều ABC, hai đường cao BN,CM
a) chứng minh tứ giác BMNC là hình thang cân
b) Tính chu vi của hình thang BMNC là hình thang cân
Định lý Ta-lét
C1: Cho hình thang ABCD. O là giao điểm 2 đường chéo. Qua O kẻ MN // AB (M thuộc AC, N thuộc BC)
Chứng minh:
a, O là trung điểm của MN
b, 1/AB + 1/CD = 2/MN
C2: Cho hình thang ABCD. AD cắt BC tại M, AC cắt BD tại O, MO cắt AB và CD tại I và K.
a, Chứng minh IA/KD = IB/KC
b, Chứng minh I,K là trung điểm của AB, CD
C3: Cho tam giác ABC( góc A= 60 độ). Dựng ra phía ngoài các tam giác đều ABD, ACE, BE cắt AC tại K, CD cắt AB tại H.
Chứng minh
a, AH = AK
b, AH mũ 2 = BH nhân CK
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Bài 1: Cho tam giác ABC có AB =12cm, AC = 24cm, Trên cạnh AB, AC lần lượt lấy các điểm D, E sao cho AD =8cm, AE = 4cm. Biết DE = 10cm, tính độ dài cạnh BC.
Bài 2: Cho tam giác ABC. Điểm D thuộc cạnh AC sao cho AB2 = AD.AC. Tính AD, AC nếu biết AB = 10cm và tỉ số khoảng cách từ A đến BD, BC là 1:2.
Bài 3: Cho hình thang ABCD(AB//CD), 𝐴̂ = 𝐷̂ = 900 ; AB =2; CD = 4,5, BD = 3. Chứng minh rằng BC vuông góc với BD.
Bài 4: Cho hình bình hành ABCD. Vẽ AH vuông góc với CD tại H, AK vuông góc với BC tại K. Chứng minh rằng tam giác KAH đồng dạng với tam giác ABC
. Bài 5: Cho hình vuông ABCD. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại M, tia DE cắt đường thẳng AB tại N. Chứng minh rằng
a) Tam giác NBC đồng dạng với tam giác BCM b) BM vuông góc với CN.
Bài 6: Cho tam giác ABC có AB = 2,5cm, AC = 2cm, BC =3cm. Chứng minh rằng 𝐴̂ =2𝐵̂
. Bài 7: Cho tam giác ABC và G là điểm thuộc miền trong tam giác. Tia AG cắt BC tại K và tia CG cắt AB tại M. Biết AG =2GK và CG = 2GM. Chứng minh rằng G là trọng tâm của tam giác ABC.
Bài 8: Cho tam giác ABC cân tại A và M là trung điểm của cạnh đáy BC.Một điểm D thay đổi trên cạnh AB. Lấy một điểm E trên cạnh AC sao cho CE .BD = MB2 . Chứng minh rằng:
a) Tam giác DBM và MCE đồng dạng
b) Tam giác DME cùng đồng dạng với hai tam giác trên.
c) Dm là phân giác của góc BDE, EM là phân giác của góc CED.
d) Khoảng cách từ M đến ED không đổi khi D thay đổi trên AB.
Cho tam giác ABC vuông tại A biết AB=6cm, AC=8cm. Kẻ đường cao AH (H thuộc BC).
a. Tính BC.
b. Chứng minh tam giác ABC đồng dạng tam giác HBA
c. Chứng minh AB.AC = AH.BC
d. Từ H kẻ HI vuông góc AB (I thuộc AB) và HK vuông góc AC (K thuộc AC). Chứng minh \(\dfrac{AB^3}{AC^3}=\dfrac{BI}{CK}\)
Cho hình thang ABCD ( AB // CD; AB < CD). Gọi I là trung điểm của cạnh BD, K là trung điểm của cạnh AC. Từ I kẻ đường thẳng vuông góc với AD, từ K kẻ đường thẳng vuông góc với BC. Chúng cắt nhau tại O. Chứng minh: tam giác ODC cân
Cho hình thang ABCD, AB//CD có góc A=góc D= 90 độ, AB=4cm, CD=9cm, BC=13cm. M là trung điểm của AD. Kẻ BK vuông góc với CD tại K.
a) Tứ giác ABKD là hình gì? Tính KC, BK, AD và AM
b) Chứng minh tam giác ABM đồng dạng với tam giác DMC
c) Tính góc BMC
cho tam giác ABC vuông tại A. Phân giác góc BAC cắt cạnh BC tại D kẻ DE vuông góc với AB tại E, kẻ DF vuông góc với AC tại F a, chứng minh AEDF là hình vuông.
b,Gọi M,N lần lượt là trung điểm của BD và CD chứng EMD=2.ABC và EM//FN.
c,cho AB=6cm,AC=8cm. tính diện tích hình vuông AEDF.
Cho tam giác ABC vuông tại A. Đường phân giác góc B cắt AC tại D, cho AB= 6cm, BC= 10cm
a) Tính AC, AD, CD
b) Từ D kẻ đường thẳng vuông góc với AC cắt BC tại K. Qua K kẻ đường thẳng vuông góc với BD tại E và cắt AB, AC lần lượt tại F,H. Chứng minh tam giác ABC đồng dạng tam giác DHK
C) Chứng minh BFDK: hình thoi