MN//BD
=>d(N;BD)=d(M;BD)
\(S_{DBN}=\dfrac{1}{2}\cdot d\left(N;BD\right)\cdot BD;S_{DBM}=\dfrac{1}{2}\cdot d\left(M;BD\right)\cdot BD\)
=>\(S_{DBN}=S_{DBM}\)
mà \(S_{ABND}=S_{ADB}+S_{BDN}\)
nên \(S_{ABND}=S_{ADB}+S_{DBM}\)
\(=S_{AOD}+S_{ABO}+S_{OMD}+S_{OBM}\)
\(=S_{ADM}+S_{ABM}\)
\(=\dfrac{1}{2}\cdot\left(S_{ADC}+S_{ABC}\right)=\dfrac{1}{2}\cdot S_{ABCD}=8\left(cm^2\right)\)