HT

Cho hình thang ABCD có AB //CD có O là giao điểm 2 đường chéo qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại E và H chứng minh OE=OH

NT
22 tháng 12 2023 lúc 18:41

Xét ΔADC có OE//DC

nên \(\dfrac{OE}{DC}=\dfrac{AE}{AD}\left(1\right)\)

Xét ΔBDC có OH//DC

nên \(\dfrac{OH}{DC}=\dfrac{BH}{BC}\left(2\right)\)

Xét hình thang ABCD có EH//AB//CD

nên \(\dfrac{AE}{ED}=\dfrac{BH}{HC}\)

=>\(\dfrac{ED}{AE}=\dfrac{CH}{HB}\)

=>\(\dfrac{ED+AE}{AE}=\dfrac{CH+HB}{HB}\)

=>\(\dfrac{AD}{AE}=\dfrac{CB}{HB}\)

=>\(\dfrac{AE}{AD}=\dfrac{BH}{BC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)

=>OE=OH

Bình luận (0)
H24
22 tháng 12 2023 lúc 18:44

Ta có \( \mathrm{OE} = \frac{1}{2}(\mathrm{AC} - \mathrm{BD}) \) và \( \mathrm{OH} = \frac{1}{2}(\mathrm{AC} - \mathrm{BD}) \).

Vì \( \mathrm{AB} / / \mathrm{CD} \), nên các tam giác \( \mathrm{ABE} \) và \( \mathrm{CDH} \) đồng dạng.

Do đó, \( \frac{\mathrm{AE}}{\mathrm{AD}} = \frac{\mathrm{CH}}{\mathrm{CD}} \).

Tương tự, \( \frac{\mathrm{BE}}{\mathrm{BA}} = \frac{\mathrm{CH}}{\mathrm{CD}} \).

Tổng hai phương trình trên ta có \( \frac{\mathrm{AE}+\mathrm{BE}}{\mathrm{AD}+\mathrm{BA}} = \frac{\mathrm{CH}}{\mathrm{CD}} \).

Nhưng \( \mathrm{AD}+\mathrm{BA} = \mathrm{AD}+\mathrm{BC} = \mathrm{AC} \) và \( \mathrm{AE}+\mathrm{BE} = \mathrm{AE}+\mathrm{AD} = \mathrm{DE} \).

Vậy \( \frac{\mathrm{DE}}{\mathrm{AC}} = \frac{\mathrm{CH}}{\mathrm{CD}} \) hoặc \( \mathrm{DE} = \frac{\mathrm{CH} \cdot \mathrm{AC}}{\mathrm{CD}} \).

Lưu ý rằng \( \mathrm{CH} \) là độ dài đoạn thẳng vuông góc từ \( \mathrm{C} \) đến \( \mathrm{AB} \), nên \( \mathrm{CH} = \frac{\mathrm{CD} \cdot \mathrm{BH}}{\mathrm{BC}} \).

Do đó, \( \mathrm{DE} = \frac{\mathrm{CD} \cdot \mathrm{BH} \cdot \mathrm{AC}}{\mathrm{BC} \cdot \mathrm{CD}} \).

Hóa giản và ta có \( \mathrm{DE} = \frac{\mathrm{BH} \cdot \mathrm{AC}}{\mathrm{BC}} \).

Xét tam giác \( \mathrm{BHE} \), ta thấy \( \mathrm{OE} \) là đoạn trung bình của \( \mathrm{BH} \), nên \( \mathrm{OE} = \frac{1}{2}\mathrm{BH} \).

Tổng kết lại, \( \mathrm{OE} = \frac{1}{2} \cdot \frac{\mathrm{BH} \cdot \mathrm{AC}}{\mathrm{BC}} = \frac{\mathrm{DE}}{2} = \mathrm{OH} \).

Vậy, chúng ta đã chứng minh được \( \mathrm{OE} = \mathrm{OH} \).

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
ZT
Xem chi tiết
KM
Xem chi tiết