MR

Cho hình thang ABCD ( AB//CD) . Một đường thẳng song song với đáy cắt cạnh bên AD,BC lần lượt ở E và F . Chứng minh ED/AD = FC/BC

H24
3 tháng 3 2020 lúc 12:39

Kẻ đoạn thẳng AC nối hai điểm A và C. Gọi O là giao điểm của đoạn thẳng AC và đoạn thẳng EF. Theo đề bài, do EF//AB và EF//CD nên áp dụng định lý Talet trong tam giác, ta có:

Xét tam giác ABC:\(\frac{FC}{FB}=\frac{OC}{OA}\)(1)

Xét tam giác ACD:\(\frac{OC}{OA}=\frac{ED}{AD}\)(2)

Từ (1) và (2), suy ra \(\frac{ED}{AD}=\frac{FC}{BC}\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
LC
3 tháng 3 2020 lúc 12:41

A B C D E F O

Gọi giao điểm của AC và EF là O

Xét tam giác ABC có:OF//AB ( EF//AB)

\(\Rightarrow\frac{FC}{BC}=\frac{OC}{AC}\)( định lý Ta-let ) (1)

Xét tam giác ADC có OE//DC ( EF//DC)

\(\Rightarrow\frac{ED}{AD}=\frac{OC}{AC}\)( định lý Ta-let ) (2)

Từ (1) và (2) \(\Rightarrow\frac{FC}{BC}=\frac{ED}{AD}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
KT
Xem chi tiết
AV
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết