TB

cho hình thang abcd (ab//cd). gọi e là giao của ad và bc, f là giao của ad và bc. chứng minh rằng đường thẳng ef đi qua trung điểm của ab và đi qua trung điểm của cd

TH
25 tháng 3 2022 lúc 20:29

-Sửa đề: F là giao của AC và BD.

EF cắt AB, CD lần lượt tại H,K.

\(\dfrac{AH}{BK}=\dfrac{AE}{BE}=\dfrac{AB}{DC}=\dfrac{BE}{CE}=\dfrac{BH}{CK}\)

\(\Rightarrow\dfrac{AH}{BK}=\dfrac{BH}{CK}=\dfrac{AB}{DC}\left(1\right)\)

\(\dfrac{AH}{CK}=\dfrac{AF}{CF}=\dfrac{AB}{CD}=\dfrac{BF}{DF}=\dfrac{BH}{DK}\)

\(\Rightarrow\dfrac{AH}{CK}=\dfrac{BH}{DK}=\dfrac{AB}{CD}\left(2\right)\)

-Từ (1) và (2) \(\Rightarrow\dfrac{AH}{CK}=\dfrac{AH}{BK}=\dfrac{BH}{CK}=\dfrac{BH}{DK}\)

\(\Rightarrow AH=BH;CK=DK\)

\(\Rightarrow\)H là trung điểm AB, K là trung điểm CD.

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
DK
Xem chi tiết
DT
Xem chi tiết
ZZ
Xem chi tiết
HT
Xem chi tiết
IT
Xem chi tiết
LA
Xem chi tiết
NP
Xem chi tiết
NN
Xem chi tiết