TM

cho hình thang ABCD (AB//CD) có hai đường chéo cắt nhau tại O . Đường thẳng qua O và // với đáy AB cắt cạnh bên AD,BC theo thứ tự ttaij M,N 

 a. CMR :OM=ON

 b. cmr \(\dfrac{\text{1}}{\text{AB}}+\dfrac{\text{1}}{\text{C\text{D}}}=\dfrac{\text{2}}{\text{MN}}\)

 c. Biết Saob=\(2011^2\)(đv diện tích) Scod=\(2012^2\)Tính Sabcd

NT
24 tháng 2 2022 lúc 14:26

a: Xét hình thang ABCD có MN//AB//CD

nên AM/MN=BN/NC

=>AM/AD=BN/BC(1)

Xét ΔADC có MO//DC

nên MO/DC=AM/AB(2)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(3)

Từ (1), (2) và (3) suy ra MO=ON(đpcm)

b:

Để \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\) thì \(\dfrac{MN}{AB}+\dfrac{MN}{CD}=2\)

MN=2ON=2OM

\(\dfrac{2OM}{AB}+\dfrac{2ON}{CD}=2\left(\dfrac{OM}{AB}+\dfrac{ON}{CD}\right)\)

mà OM/AB=DO/DB

và ON/CD=BO/BD

nên \(VT=2\cdot\left(\dfrac{DO}{DB}+\dfrac{BO}{DB}\right)=2\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
HH
Xem chi tiết
AL
Xem chi tiết
PB
Xem chi tiết
NH
Xem chi tiết
TP
Xem chi tiết
KL
Xem chi tiết
MT
Xem chi tiết
NC
Xem chi tiết