Kẻ AH vuông góc BC
\(S_{APC}=\dfrac{1}{2}\cdot AH\cdot PC\)
\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)
=>\(S_{APC}=\dfrac{1}{2}\cdot S_{ABC}\)
Kẻ CH vuông góc AP
\(S_{COA}=\dfrac{1}{2}\cdot CH\cdot AO\)
\(S_{CPA}=\dfrac{1}{2}\cdot CH\cdot AP\)
mà AO=2/3AP
nên \(S_{COA}=\dfrac{2}{3}\cdot S_{CPA}=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot S_{ABC}=\dfrac{1}{3}\cdot S_{ABC}\)
Kẻ BE vuông góc AC
\(S_{BAN}=\dfrac{1}{2}\cdot BE\cdot AN\)
\(S_{BAC}=\dfrac{1}{2}\cdot BE\cdot AC\)
mà NA=1/2AC
nên \(S_{BAN}=\dfrac{1}{2}\cdot S_{BAC}=S_{BNC}\)
Kẻ CF vuông góc BN
\(S_{BNC}=\dfrac{1}{2}\cdot CF\cdot BN\)
\(S_{BOC}=\dfrac{1}{2}\cdot BO\cdot CF\)
mà BO=2/3BN
nên \(S_{BOC}=\dfrac{1}{2}\cdot S_{BNC}=\dfrac{1}{3}\cdot S_{ACB}\)
=>\(S_{AOB}=S_{BOC}=S_{AOC}\)