Cho hình nón có thể tích bằng 12 π và diện tích xung quanh bằng 15. Tính bán kính đáy của hình nón biết bán kính là số nguyên dương.
A. 4
B. 3.
C. 6
D. 5
Cho hình nón có bán kính đáy là r = 2 và độ dài đường sinh l = 4. Tính diện tích xung quanh S của hình nón đã cho
A. S = 16 π
B. S = 8 2 π
C. S = 16 2 π
D. S = 4 2 π
Cho hình nón có bán kính đáy là r = 3 và độ dài đường sinh l = 4 .Tính diện tích xung quanh S của hình nón đã cho
A. S = 8 3 π
B. S = 24 π
C. S = 16 3 π
D. S = 4 3 π
Cho hình nón đỉnh S có bán kính đáy R = a 2 , góc ở đình bằng 60 0 . Diện tích xung quanh của hình nón bằng
A. π a 2 .
B. 4 π a 2 .
C. 6 π a 2 .
D. 2 π a 2 .
Cho hình nón đỉnh S có bán kính đáy R = a 2 , góc ở đỉnh bằng 60 0 . Diện tích xung quanh của hình nón bằng
A. π a 2
B. 4 π a 2
C. 6 π a 2
D. 2 π a 2
Cho hình nón đỉnh S, chiều cao SO=h, bán kính đáy bằng R. Gọi M là điểm nằm trên đoạn SO , đặtOM=x (0<x<h) Cắt hình nón bằng mặt phẳng (P) đi qua M và vuông góc với SO, thiết diện thu được là đường tròn (C). Tìm x để thể tích của khối nón đỉnh O đáy là hình tròn giới hạn bởi (C) đạt giá trị lớn nhất
A. x = h 2
B. x = h 3
C. x = h 4
D. x = h 5
Cho hình nón tròn xoay đỉnh S, đáy là một hìnht tròn tâm O bán kính R, chiều cao của hình nón bằng 2R. Gọi I là một điểm nằm trên mặt phẳng đáy sao cho IO=2R. Giả sử A là điểm trên đường tròn (O) sao cho O A ⊥ O I . Diện tích xung quanh của hình nón bằng:
A. π R 2 2
B. π R 2 3
C. π R 2 2 5
D. π R 2 5
Cho mặt cầu (S) tâm O bán kính r. Hình nón có đường tròn đáy (C) và đỉnh I đều thuộc (S) được gọi là hình nón nội tiếp mặt cầu (C). Gọi h là chiều cao của hình nón. Tìm h để thể tích của khối nón là lớn nhất.
A. 4 r 3
B. r 3
C. r 6
D. 7 r 6
Cho hình nón xoay có đường cao h = 4, bán kính đáy r = 3. Mặt phẳng (P) đi qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 2. Tính diện tích S của thiết diện được tạo ra.
A. S = 91
B. S = 2 3
C. S = 19
D. S = 2 6