PB

Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD'. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.

A.  3 a

B. 3 a 2

C. 3 a 3

D. 3 a 6

CT
13 tháng 3 2017 lúc 11:22

Chọn D.

Gọi P là trung điểm BB’. Ta có BD//PN => BD//(MPN). Do đó:

d(MN;BD) = d(BD;(MPN)) = d(B;(MPN))

Nhận thấy  nên tam giác MPN vuông tại M.

Do đó 

Ta có 

Cách 2:

Gọi P là trung điểm BB’. Ta có BD//PN => BD//(MPN).

Đồng thời, MP//CB', PN//B'D' => (MPN)//(CB'D')

Do đó 

(vì PC’ cắt B’C tại trọng tâm tam giác BB’C’).

Nhận thấy tứ diện C'.CB'D' là tứ diện vuông tại C' nên 

Vậy 

Cách 3: Tọa độ hóa

Chọn hệ trục tọa độ Oxyz như hình vẽ. Khi đó, 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết