PB

Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA BC. Biết góc giữa MN và mặt phẳng (ABC) bằng 60°. Khoảng cách giữa hai đường thẳng BC DM là:

A .   a 15 62

B .   a 30 31

C .   a 15 68

D .   a 15 17

CT
18 tháng 2 2018 lúc 2:40

Gọi I là trung điểm OA. Vì IM// SO ⇒ IM(ABCD) nên hình chiếu của MN lên (ABCD) là IN. Suy ra 

Áp dụng định lí cô sin trong ΔCIN, ta có: 

Ta có d(BC, DM) = d(BC, (SAD)) = d(N, (SAD)) = 2d(O, (SAD)) = 2d(O, (SBC)).

Kẻ OE  SN ⇒ OE ⊥ (SBC).

Ta có d(O, (SBC)) = OE

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết