TN

cho hình chữ nhật ABCD kẻ BK vuông góc với AC láy M,N lần lượt là trung điểm của AK,DC kẻ CI vuông góc với BM (I∈BM) và CI cắt BK tại E .cmr             a,vẽ hình 

b,EB=EK

c,tứ giác MNCE là hình bình hành 

d,MN⊥BM 

NT
24 tháng 12 2023 lúc 13:16

a: loading...

b: Xét ΔBMC có

BK,CI là các đường cao

BK cắt CI tại E

Do đó: E là trực tâm của ΔBMC

=>ME\(\perp\)BC

mà AB\(\perp\)BC

nên ME//AB

Xét ΔKAB có

M là trung điểm của KA

ME//AB

Do đó: E là trung điểm của BK

=>BE=EK

c: Xét ΔKAB có

M,E lần lượt là trung điểm của KA,KB

=>ME là đường trung bình của ΔKAB

=>\(ME=\dfrac{AB}{2}\)

mà AB=CD(ABCD là hình chữ nhật)

và \(NC=\dfrac{CD}{2}\)(N là trung điểm của CD)

nên ME=NC

Ta có: ME//AB

CD//AB

Do đó: ME//CD

Xét tứ giác MNCE có

ME//CN

ME=CN

Do đó: MNCE là hình bình hành

d: ta có: MNCE là hình bình hành

=>MN//CE

mà CE\(\perp\)MB

nên MN\(\perp\)MB

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
SN
Xem chi tiết
TL
Xem chi tiết
HM
Xem chi tiết
TV
Xem chi tiết
LD
Xem chi tiết
NL
Xem chi tiết
ZT
Xem chi tiết
ZT
Xem chi tiết