NM

 Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Gọi M và N theo thứ tư là trung điểm của các đoạn AH và DH

a) Chứng minh MN//AD

b) Gọi I là trung điểm của cạnh BC. Chứng minh tứ giác BMNI là hình bình hành 

c)  Chứng minh tam giác ANI vuông tại N

KS
17 tháng 9 2019 lúc 17:55

A B C D H M N I

Xét tam giác AHD có :

M là trung điểm của AH ( gt )

N là trung điểm của DH ( gt )

Do đó MN là đường trung bình của tam giác AHD 

Suy ra MN // AD ( tính chất ) ( đpcm)

b ) Ta có MN // CD , mà AD // BC ( 2 cạnh đối hình chữ nhật )

nên MN // BC hay MN // BI 

Vì MN = \(\frac{1}{2}\) AD ( tính chất đường trung bình của tam giác )

và BI = IC = \(\frac{1}{2}\)BC ( do gt )

mà AD = BC ( 2 cạnh đối hình chữ nhật )

MN = BI BC hay MN // BI

Xét tứ giác BMNI có MN // BI  , MN = BI ( c/m trên )

\(\Rightarrow\) tứ giác  BMNI là hình bình hành ( đpcm)

c ) Ta có MN // AD và \(AD\perp AB\) nên \(MN\perp AB\)

Tam giác ABN có 2 đường cao là AH và NM cắt nhau tại M nên M là trực tâm của tam giác ABN . Suy ra \(BM\perp AN\) 

Mà BM // IN nên \(AN\perp NI\) hay tam giác ANI vuông tại N ( đpcm )

Chúc bạn học tốt !!!

Bình luận (1)

Các câu hỏi tương tự
NA
Xem chi tiết
PH
Xem chi tiết
BB
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
LP
Xem chi tiết
TL
Xem chi tiết
FT
Xem chi tiết
KN
Xem chi tiết