Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

TT

cho hình chữ nhật ABCD có AB=6cm,AD=32cm.Từ D kẻ đường thẳng vuông góc với đường chéo AC, đường thẳng này cắt AC tại E và cắt AB tại F. Tính EA,EC,ED,FB,FD

NT
5 tháng 7 2021 lúc 12:00

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại D có DE là đường cao ứng với cạnh huyền AC, ta được:

\(\dfrac{1}{DE^2}=\dfrac{1}{AD^2}+\dfrac{1}{DC^2}\)
\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{6^2}+\dfrac{1}{32^2}=\dfrac{265}{9216}\)

hay \(DE=\dfrac{96\sqrt{265}}{265}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔDEA vuông tại E, ta được:

\(DE^2+EA^2=DA^2\)

\(\Leftrightarrow EA^2=32^2-\left(\dfrac{96\sqrt{265}}{265}\right)^2=\dfrac{262144}{265}\)

hay \(EA=\dfrac{512\sqrt{265}}{265}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDAC vuông tại D có DE là đường cao ứng với cạnh huyền AC, ta được:

\(ED^2=EA\cdot EC\)

\(\Leftrightarrow EC=\dfrac{9216}{265}\cdot\dfrac{265}{512\sqrt{265}}\)

hay \(EC=\dfrac{18\sqrt{265}}{265}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
HS
Xem chi tiết
NN
Xem chi tiết
BN
Xem chi tiết
PP
Xem chi tiết
NC
Xem chi tiết
LN
Xem chi tiết
LD
Xem chi tiết
DP
Xem chi tiết