Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

PP

Cho hình chữ nhật ABCD (AB lớn hơn AC) . Kẻ AH vuông góc BD tại H . AH cắt DC tại K và cắt đường thẳng BC tại M A) Chứng minh DH.DB=AH.AK và BC.BD=AH.AM B) Chứng minh AD bình = DK.DC C) Chứng minh AH bình= HK.HM

NT
22 tháng 8 2021 lúc 14:01

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:

\(DH\cdot DB=AD^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADK vuông tại D có DH là đường cao ứng với cạnh huyền AK, ta được:

\(AH\cdot AK=AD^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(DH\cdot DB=AH\cdot AK\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
BN
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
PN
Xem chi tiết
DQ
Xem chi tiết
NT
Xem chi tiết
AN
Xem chi tiết
MM
Xem chi tiết