a: \(DB=\sqrt{20^2+15^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AD}{BD}=12\left(cm\right)\)
b: Xét ΔADB vuông tại A và ΔHDA vuông tại H có
góc ADB chung
Do đó: ΔADB\(\sim\)ΔHDA
a: \(DB=\sqrt{20^2+15^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AD}{BD}=12\left(cm\right)\)
b: Xét ΔADB vuông tại A và ΔHDA vuông tại H có
góc ADB chung
Do đó: ΔADB\(\sim\)ΔHDA
Cho hình chữ nhật ABCD có AB=8cm,BC=6cm.Kẻ đường cao AH của tam giác ADB( AH vuông góc DB, H thuộc DB)
a) Chứng minh tam giác HAD đồng dạng tam giác ABD
b) Chứng minh AD² = DH.HB
c) Tính độ dài đoạn thẳng AH,DH
Giúp em với
Bài 1: Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Kẻ đường cao AH của tam giác ADB (AH vuông góc với DB, H thuộc DB) a) Chứng minh: tam giác HAD đồng dạng tam giác ABD b) Chứng minh: AD^2 = DH.DB. c) Tính độ dài các đoạn thẳng AH, DH. Em đang cần gấp ạ
Bài 1: Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Kẻ đường cao AH của tam giác ADB (AH vuông góc với DB, H thuộc DB)
a) Chứng minh: tam giác HAD đồng dạng tam giác ABD
b) Chứng minh: AD^2 = DH.DB.
c) Tính độ dài các đoạn thẳng AH, DH.
d) Tính tỉ số diện tích tam giác HAD và tam giác ABD từ đó suy ra tỉ số đồng dạng của nó
Câu 1:Cho tam giác ABC vuông tại A (AC>AB) AH là đường cao. Từ trung điểm I của cạnh AC về ID vuông góc với cạnh huyền BC. Biết AB =3cm, AC=4cm
a) Tính độ dài cạnh BC
b) Cm: tam giác IDC đồng dạng tam giác BHA
Câu 2: Cho hình chữ nhật ABCD có AB=8cm, BC =6cm . Vẽ đường cao AH của tam giác ADB
a) Tính DB
b) Cm: tâm giác ADH đồng dạng tam giác ADB
c) Cm: AD^2=DH.DB
d) Cm: tâm giác AHB đồng dạng tam giác BCD
e) Tính độ dài đoạn thẳng DH,AH
Câu 3:Cho tam giác ABC vuông tại A có AB =6cm, AC =8cm .Vẽ đường cao AH
a) Tính BC
b) Cm : tam giác ABC đồng dạng tam giác AHB
c) Cm: AB^2=BH.BC.Tính BH, HC
d) Vẽ phân giác AD của góc A (D thuộc BC). Tính DB
Cho hình chữ nhật ABCD AB=8cm AD=6cm Tính BD Hạ AH vuông góc với (H thuộc BD) chứng minh tam giác DHA đồng dạng với tam giác DAB Tính AH
Cho tam giác ABC vuông ở A có AB = 6 cm AC = 8 cm Vẽ đường cao AH AC tính BC b Chứng minh tam giác ABC đồng dạng tam giác ahb c a chứng minh AB vuông bằng BH nhân BC nhân tính bh , b c đi Vẽ phân giác AD của góc A D thuộc BC Tính dB
AI GIÚP MÌNH CÂU NÀY VỚI Ạ, MÌNH CẦN GẮP LẮM
CÂU 1. CHO TAM GIÁC ABC VUÔNG TẠI A, ĐƯỜNG CAO AH, HD LÀ PHÂN GIÁC CỦA GÓC AHC. a) CHỨNG MINH TAM GIÁC ABC ĐỒNG DẠNG VỚI TAM GIÁC HAC
b) CHỨNG MINH AB × DC = AD × AC
CÂU 2. CHO TAM GIÁC ABC CÓ 3 GÓC NHỌN, ĐƯỜNG CAO AH. VẼ HD VUÔNG GÓC VỚI AB TẠI D, HE VUÔNG GÓC VỚI AC TẠI E
a) CHỨNG MINH: TAM GIÁC AHB ĐỒNG DẠNG TAM GIÁC ADH, AH × AH = AD × AB
b) CHỨNG MINH: AD × AB = AE × AC
c) CHỨNG MINH TAM GIÁC ADE ĐỒNG DẠNG VỚI TG ACB
d) ĐƯỜNG PHÂN GIÁC GÓC AHB CẮT AB TẠI M. CM: MB = 2/5 AB VÀ TÍNH BD/DA
Cho hình chữ nhật ABCD, kẻ AH vuông góc với BD tại H.
a) Chứng minh tam giác ADH đồng dạng với tam giác BAH, suy ra AH2=DH.BH
b) Tính AD, AB biết DH = 9 cm, BH = 16 cm.
c) Gọi K,M,N lần lượt là trung điểm của AH, BH, CD. Chứng minh tứ giác MNDK là hình bình hành và góc AMN = 90°
Cho hình bình hành ABCD có góc A lớn hơn 90 độ. Vẽ BE vuông góc với AD , AI vuông góc với BD tại I
a) Chứng minh tam giác DAI đồng dạng với tam giác DBE
b) Vẽ BF vuông góc với DB tại F. Chứng minh tam giác DFB đồng dạng với tam giác BIA
c) cm DI/DE = CB/DB, DF/BI=DB/DC