DH

Cho hình chữ nhật ABCD có AB=12cm, BC=5cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD, phân giác của góc BCD cắt BD ở E

a) CM: tam giác AHB đồng dạng tam giác BCD

b) Tính độ dài AH ?

c) CM: AH.ED=HB.EB

NT
26 tháng 1 2024 lúc 19:25

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)

Do đó: ΔAHB~ΔBCD

b: ta có: ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD^2=12^2+5^2=169\)

=>\(BD=\sqrt{169}=13\left(cm\right)\)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH\cdot BD=AB\cdot AD\)

=>\(AH\cdot13=12\cdot5=60\)

=>\(AH=\dfrac{60}{13}\left(cm\right)\)

c: Xét ΔBCD có CE là phân giác

nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(1)

Xét ΔHAB vuông tại H và ΔADB vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHAB~ΔADB

=>\(\dfrac{HA}{AD}=\dfrac{HB}{AB}\)

=>\(\dfrac{HA}{HB}=\dfrac{AD}{AB}=\dfrac{BC}{CD}\left(2\right)\)

Từ (1),(2) suy ra \(\dfrac{EB}{ED}=\dfrac{HA}{HB}\)

=>\(EB\cdot HB=HA\cdot ED\)

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
MD
Xem chi tiết
HV
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết