Cho hình bình hành ABCD có O là giao điểm của 2 đường chéo. Chứng minh:
a) vectoAC - vectoBA = vectoAD; |vectoAB + vectoAD| = AC
b) Nếu |vectoAB + vectoAD| = |vectoCB - vectoCD| thì ABCD là hình chữ nhật
cho tứ giác ABCD cm
a)vecto AB+vectoCD=vectoAD-vectoBC
b)vectoAB-vectoCD=vectoAC-vectoBD
c)vectoAB+vectoCD=vectoAD+vectoCB
Cho tam giác ABC có trọng tâm G, gọi I là trung điểm BC. Tìm tập hợp điểm M thỏa mãn: \(2\left|\overrightarrow{MC}+\overrightarrow{IA}-\overrightarrow{IM}-\overrightarrow{BM}\right|=3\left|\overrightarrow{AB}+\overrightarrow{MC}-\overrightarrow{AM}\right|\)
Câu 1:Cho hình vuông ABCD cạnh a.Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right|\)?
Câu 2:Cho AM thỏa mãn \(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}\) thì điểm M là gì?
Câu 3:Cho tam giác ABC,có bao nhiêu điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=5\)?
Câu 4:Cho tam giác ABC.Điểm M thỏa mãn \(\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{CM}=\overrightarrow{0}\) thì điểm M là gì?
Câu 5:Cho hình bình hành ABCD.Tập hợp tất cả các điểm M thỏa mãn đẳng thức \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{0}\) là:
A.một đường tròn
B.một đường thẳng
C.một điểm
D.một đoạn thẳng
Cho 2 điểm A, B phân biệt cố định. Tìm tập hợp điểm M thỏa mãn | vecto MA + vecto MB | = |vecto MA - vecto MB|
Cho hình chữ nhật ABCD có AB=6 ,BC=8 tính độ dài vecto AD-AB
Ai
CHo hình bình hành ABCD có O là giao điểm của 2 đường chéo. Chứng minh:
a, \(\overrightarrow{AC}-\overrightarrow{BA}=\overrightarrow{AD};\) \(|\) \(\overrightarrow{AB}+\overrightarrow{AD}\)\(|\) \(=\overrightarrow{AC}\)
b, NẾu \(|\overrightarrow{AB}+\overrightarrow{AD}|=|\overrightarrow{CB}-\overrightarrow{CD|}\) thì ABCD là hình chữ nhật
Cho hình vuông ABCD cạnh a. Tính |vectoAB + vectoAC + vectoAD|
cho tam giác ABC , tìm tập hợp điểm M thỏa mãn | 2 lần vecto MA+ 3 lần vecto MB|=|3 lần vecto MB+ 2 lần vecto MC|