H24

cho hình chữ nhật ABCD, có AB= 12cm , BC=9cm, gọi H là chân đường vuông góc kẻ từ A xuống BD , tia phân giác của góc CBD cắt CD tại E . a, tính tỷ số EC/ED. b, cminh tam giác AHB đồng dạng với tam giác BCD

NT
28 tháng 8 2021 lúc 21:43

a: Áp dụng định lí Pytago vào ΔBDC vuông tại C, ta được:

\(DB^2=BC^2+CD^2\)

\(\Leftrightarrow DB^2=12^2+9^2=225\)

hay DB=15(cm)

Xét ΔBDC có 

BE là đường phân giác ứng với cạnh DC

nên \(\dfrac{EC}{ED}=\dfrac{BC}{BD}=\dfrac{9}{15}=\dfrac{3}{5}\)

b: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

\(\widehat{ABH}=\widehat{BDC}\)

Do đó: ΔAHB\(\sim\)ΔBCD

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DH
Xem chi tiết
MD
Xem chi tiết
KN
Xem chi tiết
HV
Xem chi tiết
HM
Xem chi tiết
AH
Xem chi tiết
LN
Xem chi tiết
DT
Xem chi tiết