a: Sửa đề: AD=6cm
BC=AD=6cm
CD=AB=8cm
BD=căn 6^2+8^2=10cm
Xét ΔBCD vuông tại C có sin DBC=DC/BD=8/10=4/5
nên góc DBC=53 độ
=>góc BDC=37 độ
b: CH=6*8/10=4,8cm
BH=BC^2/BD=6^2/10=3,6cm
a: Sửa đề: AD=6cm
BC=AD=6cm
CD=AB=8cm
BD=căn 6^2+8^2=10cm
Xét ΔBCD vuông tại C có sin DBC=DC/BD=8/10=4/5
nên góc DBC=53 độ
=>góc BDC=37 độ
b: CH=6*8/10=4,8cm
BH=BC^2/BD=6^2/10=3,6cm
Cho hình chữ nhật ABCD,biết BC=8cm,CD=6cm.Từ C kẻ CH vuông góc với BC(H thuộc BD). A,giải tam giác vuông BCĐ. B,gọi O là giao điểm của AC và BD. Qua điểm H kẻ đường thẳng HE vuông góc với AC (E thuộc AC).Tính CH,BH,CE? C,gọi F là giao điểm của EH và AD.Tính diện tích tam giác AEF.
Cho đường tròn (O;R), và các tiếp tuyến AB,AC căt nhau tại A nằm ngoài đường tròn(B,C là các tiếp điểm).Gọi H là giao điểm của BC và OA
a)CM: OAvuông góc với BC và OH.OA=R^2
b)Kẻ đường kính BD của đường tròn (O) và đường thẳng CD vuông góc với BD (K thuộc BD).CM OA song song với CD và AC.CD=CK.AO
c)Gọi I là giao điểm của AD và CK. CM:tam giác BIK và tam giác CHK có diện tích bằng nhau.
Cho hình chữ nhật ABCD . Qua D kẻ đường thẳng vuông góc với BD cắt BA, BC tại M, N. Gọi O là trung điểm của MN.
a) Chứng minh BO vuông góc với AC
b) Gọi E là trung điểm của DN, I là giao điểm của AC, BD
Chứng minh MI vuông góc với BE
c) Hình chữ nhật ABCD thỏa mãn điều kiện gì để diện tích tam giác BMN nhỏ nhất
Giúp mình cách giải luôn nha
Câu 1: Hình thang ABCD (AB // CD) có AC vuông góc BD tại O. Biết AB=3,5 cm; AD=5,2 cm. Gọi M là trung điểm CD. Tính diện tích AMO.
Câu 2: Cho hình thang cân ABCD có đáy nhỏ AB=7cm; BD vuông góc BC. Kẻ BH vuông góc CD(với H thuộc CD). Biết BH=5cm. Tính diện tích ABCD và góc BCD.
Câu 3: Cho hình thang cân ABCD có đáy nhỏ AB=BC= \(\frac{1}{2}\)CD và AC=4cm. Tính góc C và diện tích ABCD.
Câu 4: Cho hình thang cân ABCD có AB//CD, BC=12cm, AC=15cm. Tính góc C và diện tích ABCD.
Câu 5: Cho hình thang vuông ABCD (vuông ở A và B0 có E là trung điểm CD; AE cắt BC tại F. Biết AD=1,5 cm; BC=2,7 cm; AB=2cm. Tính các góc và diện tích của tam giác BEF.
Cho đường tròn (O;R), và các tiếp tuyến AB,AC căt nhau tại A nằm ngoài đường tròn(B,C là các tiếp điểm).Gọi H là giao điểm của BC và OA
a)CM: OAvuông góc với BC và OH.OA=R^2
b)Kẻ đường kính BD của đường tròn (O) và đường thẳng CD vuông góc với BD (K thuộc BD).CM OA song song với CD và AC.CD=CK.AO
c)Gọi I là giao điểm của AD và CK. CM:tam giác BIK và tam giác CHK có diện tích bằng nhau
Chi can lam cau c
cho (O) đường kính AB = 6 cm.Trên đoạn OB lấy điểm M sao cho MB =1cm . Qua M vẽ dây CD của (O) vuông góc với AB
a/ CM tam giác ABC vuông và tính BC
b/ Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của (O) ở E .Chứng minh EC là tiếp tuyến của (O)
c/gọi F là giao điểm của hai tia AC và BD . Kẻ FH vuông góc AB và gọi K là giao điểm của hai tia CB và FH CM;tam giác FBK cân
d/ CM H,C,E thẳng hàng
Cho hình chữ nhật ABCD (AD<AB).Từ B,kẻ đường thẳng vuông góc với BD cắt DC tại E.Gọi K là giao điểm các đường phân giác các góc trong của tam giác BCD,gọi G là giao điểm các đường phân giác các góc trong của tam giác BCE.Đường thẳng KG cắt BD và BE theo thứ tự tại M và N.CM; MN^2=2CD*CE
Cho tứ giác ABCD nội tiếp đường tròn (O; R). Gọi I là giao điểm AC và BD. Kẻ IH vuông góc với AB; IK vuông góc với AD ( H ∈ A B ; K ∈ A D ).
a) Chứng minh tứ giác AHIK nội tiếp đường tròn.
b) Chứng minh rằng IA.IC = IB.ID.
c) Chứng minh rằng tam giác HIK và tam giác BCD đồng dạng.
d) Gọi S là diện tích tam giác ABD, S’ là diện tích tam giác HIK. Chứng minh rằng: S ' S ≤ H K 2 4. A I 2
Cho đường tròn (O), đường kính BC. Lấy 1 điểm A trên đường tròn (O) sao cho AB>AC. Từ A kẻ AH vuông góc vs BC( H thuộc BC). Từ H vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB và F thuộc AC).
a, chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF
b, Đường thẳng EF cắt đường tròn tại P và Q (E nằm giữa P và F)
Chứng minh AP^2=AE*AB. suy ra APH là tam giác cân
c, Gọi D là giao điểm của PQ và BC, K là giao điểm của AD và đường tròn (O) ( K khác A). Chứng minh rằng AEFK là tứ giác nội tiếp
d, Gọi I là giao điểm của KF và BC. Chứng minh IH^2=IC*ID