Bài 4: Hai mặt phẳng song song

LH

Cho hình chóp S.ABCD Gọi M N P Q lần lượt là trung điểm của các cạnh SA SB SC SD Chứng minh rằng hai mặt phẳng MNP và (NPQ)song song với mặt phẳng ABCD Từ đó suy ra bốn điểm M N P Q đồng phẳng

NT
24 tháng 11 2023 lúc 20:05

Xét ΔSAB có \(\dfrac{SM}{SA}=\dfrac{SN}{SB}=\dfrac{1}{2}\)

nên MN//AB

Xét ΔSBC có \(\dfrac{SN}{SB}=\dfrac{SP}{SC}=\dfrac{1}{2}\)

nên NP//CD

Xét ΔSDC có \(\dfrac{SP}{SC}=\dfrac{SQ}{SD}=\dfrac{1}{2}\)

nên PQ//CD

MN//AB

AB\(\subset\left(ABCD\right)\)

MN không nằm trong mp(ABCD)

Do đó: MN//(ABCD)

NP//BC

BC\(\subset\)(ABCD)

NP không nằm trong mp(ABCD)

Do đó: NP//(ABCD)

PQ//CD

CD\(\subset\)(ABCD)

PQ không nằm trong mp(ABCD)

Do đó: PQ//(ABCD)

MN//(ABCD)

NP//(ABCD)

MN,NP cùng nằm trong mp(MNP)

Do đó: (MNP)//(ABCD)

NP//(ABCD)

PQ//(ABCD)

NP,PQ cùng nằm trong mp(NPQ)

Do đó: (NPQ)//(ABCD)

(MNP)//(ABCD)

(NPQ)//(ABCD)

Do đó: M,N,P,Q đồng phẳng

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
NH
Xem chi tiết
NP
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
MV
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết