Bài 4: Hai mặt phẳng song song

SK

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M và M' lần lượt là trung điểm của các cạnh BC và B'C'

a) Chứng minh rằng AM song song với A'M'

b) Tìm giao tuyến của mặt phẳng (AB'C') với đường thẳng A'M

c) Tìm giao tuyến d của hai mặt phẳng (AB'C') và (BA'C')

d) Tìm giao điểm G của đường thẳng d với mặt phẳng (AM'M)

     Chứng minh G là trọng tâm của tam giác AB'C'

H24
31 tháng 3 2017 lúc 10:29

a) Do MM' lần lượt là trung điểm của BC và B'C' nên M'M//BB'//CC'. Vì vậy MM'//AA'.
Vì vậy tứ giác A'M'MA là hình bình hành. Suy ra: AM//A'M'.
b) Trong mp (AA'M'M), ta có: MA' ∩ AM' = K.
     Do \(K\in A'M\)  và \(A'M\in\left(AB'C'\right)\) nên K (AB'C').

c) Có \(O=AB'\cap A'B\) nên \(O\in\left(AB'C'\right)\cap\left(BA'C'\right)\).
 Suy ra: \(d\equiv CO'\).

d) Trong (AB'C'): C'O ∩ AM' = G vì vậy G ( AMM') . Mà O, M' lần lượt là trung điểm AB' và B'C' nên G là trọng tâm của tam giác AB'C'.

 

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
VT
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
LH
Xem chi tiết