H24

cho hình chóp S.ABCD, đáy ABCD là hình vuông tâm O. Gọi M, N, P lần lượt là trung điểm các cạnh SA, SB, SC

a) chứng minh MN // (ABCD)

b) chứng minh NP // (ABCD) 

c) chứng minh (MNP) // (ABCD)

NT
17 tháng 11 2023 lúc 18:56

a: Xét ΔSAB có

M,N lần lượt là trung điểm của SA,SB

=>MN là đường trung bình cuả ΔSAB

=>MN//AB

MN//AB

AB\(\subset\)(ABCD)

MN không nằm trong mp(ABCD)

Do đó: MN//(ABCD)

b: Xét ΔSCB có

N,P lần lượt là trung điểm của SB,SC

=>NP là đường trung bình của ΔSBC

=>NP//BC

NP//BC

BC\(\subset\)(ABCD)

NP không nằm trong mp(ABCD)

Do đó: NP//(ABCD)

c: NP//(ABCD)

MN//(ABCD)

MN,NP nằm trong mp(MNP)

Do đó: (MNP)//(ABCD)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết