Yêu cầu đề bài sai:
- Ở câu `a` thì `BD ////AC=>BD //// (SAC)`.
- Ở câu `b` thì `d(B;(SAB))=0` vì `B` nằm trong `(SAB)`.
Yêu cầu đề bài sai:
- Ở câu `a` thì `BD ////AC=>BD //// (SAC)`.
- Ở câu `b` thì `d(B;(SAB))=0` vì `B` nằm trong `(SAB)`.
Cho hình chóp S.ABCD, đáy ABCD là hình thoi cạnh a, B A D ^ = 60 ο , SA = SB = SD = a.
a) Chứng minh (SAC) vuông góc với (ABCD).
b) Chứng minh tam giác SAC vuông.
c) Tính khoảng cách từ S đến (ABCD).
cho hình chóp S.ABCD, đáy là hình vuông,cạnh a. tâm giác SAB và tam giác SAC vuông tại A. góc giữa SC và(ABCD) bằng 30 độ.
a) chứng minh SA vuông góc với (ABCD)
b)cho AH là đường cao tâm giác SAB, chứng minh AH vuông góc với SC
c)góc giữa SC và (SAB)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O , cạnh a , SA vuông góc ABCD , SA =a√2 a) CM : BD vuông góc SAC b) tính góc giữa SC và mp ABCD
Cho hình chóp S.ABCD có ABCD là hình vuông tâm O, cạnh a SA vuông góc với mặt phẳng (ABCD) và SA=a căn 2. Tính khoảng cách từ:
a) C đến mặt phẳng (SAB).
b) từ A đến (SCD).
c) Từ O đến (SCD).
d) Khoảng cách giữa hai đường thẳng AB và SC.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA=SB=SC=SD=a√2; O là tâm của hình vuông ABCD.
a) C/m (SAC) và (SBD) cùng vuông góc với (ABCD).
b) C/m (SAC) ⊥(SBD)
c) Tính khoảg cách từ S đến (ABCD)
d) Tính góc giữa đường SB và (ABCD).
e) Gọi M là trung điểm của CD, hạ OH⊥SM, chứng minh H là trực tâm tam giác SCD
f) Tính góc giưa hai mặt phẳng (SCD) và (ABCD)
g) Tính khoảng cách giữa SM và BC; SM và AB.
cho hình chóp S.ABCD; ABCD là hình vuông cạnh 2a; SA vuông góc với ABCD; SA = a căn 2. Kẻ AH vuôgn góc với Sb; AK vuông góc với SD. Chứng minh rằng: a) BC vuông góc SAB; b) BD vuông góc SAC; c) AH vuông góc SBC; d) SC vuông góc với AKH
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và SA ⊥ (ABCD).
a) Chứng minh BD ⊥ SC.
b) Chứng minh (SAB) ⊥ (SBC).
c) Cho SA = (a√6)/3. Tính góc giữa SC và mặt phẳng (ABCD).
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy. Biết SA = a AB = 2a RC = a * sqrt(3)
a) Chứng minh CD. (SAD) SD và (ABCD).b) Tính góc giữac) Tính khoảng cách từ điểm D đến (SBC).Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA ⊥ (ABCD) và SA = 3a.
a) Chứng minh AD ⊥ (SAB) và AB ⊥ (SAD)
b) Kẻ đường cao AM trong tam giác SAB. Chứng minh rằng AM ⊥ SC
c) Tính góc giữa đường thẳng SB và (SAC)