PB

Cho hình chóp S.ABCD có thể tích V , đáy là hình bình hành tâm O. Mặt phẳng (α) đi qua A, trung điểm I của SO cắt các cạnh SB, SC, SD lần lượt tại M, N, P. Thể tích nhỏ nhất của khối chóp S.AMNP bằng

A.  V 18

B.  V 3

C.  V 6

D.  3 V 8

CT
26 tháng 9 2017 lúc 4:03

Với x = S A S A = 1 ; y = S M S B , z = S N S C ; t = S P S D

ta có 1 x + 1 z = 1 y + 1 t  và xét tam giác SAC ta có

Mặt khác ba điểm A, I, N thẳng hang nên

1 4 + 1 4 z = 1 ⇔ z = 1 3

Do đó  1 y + 1 t = 1 1 + 1 1 3 = 4 ⇒ y = t 4 t - 1

Vì vậy

Dấu bằng đạt tại t = 1 2 ; y = 1 2 .  Tức mặt phẳng α đi qua trung điểm các cạnh SB. SD.

Chọn đáp án C.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết