Bài 4: Phép đối xứng tâm

CC

Cho hình chóp SABCD có đáy hình thang abcd với ab là đáy lớn AB=2CD. Gọi M, N lần lượt là trung điểm của các cạnh SB và SC

a, Tìm giao tuyến của 2 mp (SAD) và ( SBC)

b, Tìm giao điểm I của đường thẳng SD với mp ( AMN)

c, Dựng thiết diện của hình chóp với mặt phẳng ( AMN)

d, TÍnh tỉ số \(\dfrac{SI}{SD}\)

NL
7 tháng 1 2021 lúc 16:44

Kéo dài AD và BC cắt nhau tại E

\(\Rightarrow SE=\left(SAD\right)\cap\left(SBC\right)\)

Trong mp (SBC), nối MN kéo dài cắt SE tại F

Trong mp (SAD), nối AF cắt SD tại I

\(\Rightarrow I=SD\cap\left(AMN\right)\)

Tứ giác AINM chính là thiết diện của (AMN) và chóp

MN là đường trung bình tam giác SCD \(\Rightarrow F\) là trung điểm SE

Mặt khác CD song song và bằng 1/2 AB \(\Rightarrow\) CD là đường trung bình tam giác ABE hay D là trung điểm AE

\(\Rightarrow\) I là trọng tâm tam giác SAE

\(\Rightarrow\dfrac{SI}{SD}=\dfrac{2}{3}\)

Bình luận (0)